AP1000核电站通风系统用均流器抗震性能分析

周壮林^{通讯作者} 曾锦荣

(南方风机股份有限公司 广东 佛山 528000)

摘要:抗震级均流器是 AP1000 核电站主控室通风系统的重要设备。针对有抗震等级(抗震Ⅱ类)要求的均 流器,必须保证在地震过程中及地震后仍能保持设备结构的完整性。为了对抗震级均流器在地震工况下的 完整性进行验证,本文应用 ANSYS 软件对均流器进行数值模拟,建立有限元分析模型;并采用谱分析的方 法验证设备在事故工况下的结构应力。从分析计算结构表明,在核电站事故工况下该抗震级均流器满足相 关规范要求。

关键词: AP1000 核电站; 通风系统均流器; 有限元分析法; 抗震鉴定

0 引言

鉴于核电站通风系统用均流器为非能动设备,抗震 等级为"抗震Ⅱ类",其设备抗震鉴定通常采用有限元 分析计算的方法进行^[1]。

针对非能动先进压水堆 AP1000 核电站主控室通 风系统用抗震级均流器具体结构参数,采用 ANSYS 有 限元分析方法对设备整体进行建模并用谱分析方法对 其进行抗震分析计算。依据 ASME 规范对其在异常工 况(B级使用荷载)及事故工况(D级使用荷载)下进 行抗震评定^[2]。

1 均流器计算模型、载荷组合及边界条件

1.1 计算模型

AP1000核电站主控室通风系统用抗震级 均流器设备整体由圆筒1、叶片1、圆筒2、 叶片2、中心圆筒、端面连接法兰及加强筋组 成,设备主体结构均采用 316L 材料。结构示 意图如图1所示。依据均流器在主控室的实 际使用情况,在进行分析计算时考虑连接在 设备上的接管载荷,在均流器进风口端考虑 250mm长接管载荷,出风口端考虑 200mm长 接管载荷。均流器结构计算模型采用的坐标系 统(X、Y、Z)定义如下:取XY平面与法兰 平面平行,竖直方向为坐标系 Y 轴向,管道 轴向为Z轴向。在计算过程中,对均流器结 构的主要受力部件:法兰、圆筒1及圆筒2及 二组叶片、加强筋等均采用壳单元(Shell163) 模拟。抗震级均流器有限元模型(含风管)见 图 2。

均流器结构计算模型采用的坐标系统(X,Y、图1 抗震级均流器结构示意图

Z) 定义如下: 取XY 平面与法兰平面平行, 竖直方向为 坐标系 Y 轴向,管道轴向为 Z 轴向。计算中,对均流器 结构的主要受力部件:法兰、双层圆筒及圆筒间二组叶片、 加强筋等均采用壳单元(Shell163)模拟。均流器结构计 算模型总计单元数 10952, 节点总数 9665^[3]。

1.2 载荷组合

1.2.1 均流器重量荷载 (DW)

均流器结构及其附属部件自重,重力加速度取值 $g=9.81 \text{ m/s}^2$

1.2.2 均流器设计压力 (Po)

依据上游设计输入,均流器及相连系统管道的设计

机械工业应用

图 2 抗震级均流器有限元模型图

表 1 均流器所在安装厂房楼层反应谱值

内压为 2.49kPa。

1.2.3 均流器接管荷载 (PL)

依据均流器在主控室的实际使用情况,在均流器进 风口端考虑 250mm 长接管作用,出风口端考虑 200mm 长接管作用。

1.2.4 地震荷载 (OBE、SSE)

OBE 为运行基准地震动,SSE 为安全停堆地震动。 地震荷载由某 AP1000 电站地震输入设计楼层反应谱作 用到均流器结构上计算得到。根据上游设计方提供的 均流器安装厂房楼层反应谱,SSE 地震阻尼比取 0.04; OBE 地震阻尼比取 0.03,OBE 谱值取列表值的 1/2。 楼层反应谱值列于表 1,反应谱曲线见图 3、图 4。 1.2.5 荷载组合

异常工况(B级使用荷载)荷载组合为: DW+Po+PL+OBE;事故工况(D级使用荷载)荷载组 合为:DW+Po+PL+SSE。

1.3 边界条件

均流器两端外接管道吊装处为固定约束边界。

2 均流器结构应力评定准则

根据 ASME AG-1 规范 AA4321 规定,均流器结构

	-								
	OBE 地震输入谱(阻尼比 0.03)				SSE 地震输入谱(阻尼比 0.04)				
	水平方向		竖直方向		水平方向		竖直方向		
	频率 /Hz	加速度 /g	频率 /Hz	加速度 /g	频率 /Hz	加速度 /g	频率 /Hz	加速度 /g	
1	1.027	0.790	1.000	0.450	1.000	0.670	1.000	0.450	
2	1.276	1.121	1.800	1.260	1.375	1.070	1.800	1.260	
3	1.384	1.290	2.210	1.740	1.600	1.300	2.210	1.740	
4	1.968	1.818	2.500	2.120	2.140	2.400	2.500	2.120	
5	2.210	2.469	8.250	2.120	3.470	2.400	7.200	2.120	
6	3.200	2.469	9.700	3.085	3.900	1.690	7.500	1.640	
7	4.260	1.500	10.564	3.085	4.270	1.280	8.250	1.640	
8	4.621	1.500	11.788	4.866	5.830	2.970	9.700	2.820	
9	5.830	2.970	13.154	4.866	8.000	2.970	11.300	2.820	
10	8.000	2.970	14.478	7.039	9.500	2.030	12.600	4.180	
11	9.500	2.136	19.844	7.039	12.500	2.030	14.300	4.180	
12	12.761	2.136	20.700	6.778	18.750	1.200	15.650	5.730	
13	14.000	1.690	23.570	4.866	20.000	0.980	20.700	5.730	
14	15.013	1.690	25.600	4.866	26.000	0.980	23.570	4.450	
15	25.119	1.076	40.000	1.738	29.300	0.900	25.600	4.450	
16	28.762	0.970	50.000	1.477	30.300	0.830	40.000	1.730	
17	35.000	0.830	59.403	1.304	100.00	0.830	50.000	1.450	
18	100.00	0.830	100.00	1.304	-	_	59.403	1.304	
19	_	_	_	-	-	_	100.00	1.304	

- 58 -

图 3 均流器结构第 4 阶振动模态 (X 向主导模态)

图 4 均流器结构第 5 阶振动模态 (Y 向主导模态)

表 2 板壳型部件应力评定准则及限值

工况	应力分类	应力限制 /MPa	316L 限值 /MPa		
B级	σ_1 ⁽¹⁾	1.0S	117		
	$\sigma_1 + \sigma_2^{\circ}$	1.5S	175		
D级	σ_1	min{1.5S,0.4Su}	175		
	$\sigma_1 + \sigma_2$	min{2.25S,0.6Su}	263		

注: ① σ₁-薄膜应力; ② σ₂-弯曲应力。

采用板壳型部件及其支承件设计验证的要求 评定。均流器结构许用应力评定准则及限值 列于表 2。

316L 钢板根据 ASME 规范,非承压、非 紧固件许用应力取值 *S*=min $(2S_y/3, S_u/3.5)$; 紧固件许用应力取值 *S*=min $(S_y/4, S_u/5)$; 依据 316L 材料室温 (20 ℃)下的机械力 学性能:屈服限值 S_y =175MPa;强度限值 S_u =450MPa。则材料许用应力 S_m =117MPa。

3 均流器模态分析

计算了均流器结构前 40 阶模态,频率 介于 72.11 ~ 249.42Hz, 其 X、Y、Z 三 个方向主导模态(参与质量最大)的频 率分别为117.45Hz(第4阶)、119.00Hz (第5阶)、72.11Hz(第1阶)。上述 结果表明,均流器结构满足刚性体假 设,地震作用亦可以采用等效静力法 计算。主要模态示意图如图3~图5 所示。

4 均流器地震响应分析

采用谱分析法计算均流器在地震载荷作 用下的应力。谱分析时频率截止到谱零周期 谱值对应的频率(100Hz),对各个方向残余 未参与的质量采用等效静力法计入其作用效 应。首先分别输入X、Y、Z 三个方向的地 震载荷进行计算,并将各方向的计算结果采 用 SRSS(平方和开方)的方法进行振型组合, 分别得到结构在三个方向的应力结果,然后 将三个方向的应力结果和等效静力法计算的 结果进行组合,最后得到结构在三个方向地 震载荷共同作用下的应力结果。

在 OBE 和 SSE 地震载荷作用下,均流器 各主要部件在 B 级、D 级使用荷载作用下的 薄膜应力及薄膜加弯曲响应主应力最大值列 于表 3。均流器整体结构在 B 级、D 级使用 荷载作用下的薄膜应力及薄膜加弯曲应力分 布云图分别见图 6、图 7。

5 均流器抗震性能评定

均流器结构在 B 级和 D 级使用荷载工况下各主要 部件的最大响应主应力计算结果及评定见表 4。

6 结语

本文采用软件 ANSYS 对 AP1000 抗震级均流器进

- 59 -

机械工业应用

2022年 第35期

图 5 均流器结构第 1 阶振动模态 (Z 向主导模态)

图 6 B级工况均流器整体结构主应力分布云图

- 60 -

表 3 均流器结构各主要部件最大地震响应主应力最大值 /MPa

郭 州夕む	В	级工况	D 级工况		
	σ_1	$\sigma_1 + \sigma_2$	σ_1	$\sigma_1 + \sigma_2$	
均流器法兰	6.76	22.80	13.00	28.80	
圆筒 1(外筒)	3.69	12.80	7.30	16.40	
圆筒 1(内筒)	0.96	2.08	1.45	2.49	
中心圆筒	2.02	5.54	3.49	7.02	
叶片 1(外层)	5.46	5.81	6.65	7.00	
叶片 2(内层)	1.10	1.56	1.55	2.20	
加强筋	1.07	4.76	2.32	5.95	

行了有限元分析,对均流器整体结构进行了强度及完整性评定。结果表明,在B级工况和D级工况下,均流器在抗震安全性方面满足ASME相关规范要求,具有良好的抗震性能。

(下转第64页)

机械工业应用

图 6 温度变化趋势图

绕组中部温度相对端部下降慢,因此估算值较真实值偏低。(3)机组满负荷运行时,定子绕组温升更高,此时最容易发现定子绕组中部存在的问题,因此在制定修正方法时,首先考虑机组满负荷运行情况。

由于光纤温度传感器安装的位置在绕组表面,会 受到安装位置、通风散热等因素的影响,导致其预测 值和实际值的偏差也不同。但是,总体上来看预测值 和实际值相差较小,平均误差小于0.75℃,满足工程 需要。

4 结语

本文针对大型水轮发电机绕组中部温度传感器损坏 的问题,提出了基于数据融合的水轮发电机定子绕组 温度监测方法。通过在绕组端部温度的监测,结合历 史数据,得到了不同温度分段下的表达式,建立了绕 组端部温度和绕组中部温度的数学模型。在此基础上, 搭建了绕组温度的测试系统,通过现场测试验证了所 提出的温度监测方法的可行性,能够满足工程应用。本 文提出的方法为大型水轮发电机的绕组温度监测提供 了一种新的思路。

参考文献:

[1] 范镇南,韩力,周光厚,等.大型贯流式水轮发电机阻尼绕组损耗与发热[J].高电压技术,
2011,37(02):468-475.

[2] 兰紫君.水轮发电机定子绕组温度预警研究 [D]. 重庆:重庆理工大学,2021.

[3] 侯云鹏,李伟力,周封,等.绝缘老化对大型 水轮发电机定子最热段温度场的影响[J].大电机技 术,2001(01):17-22.

[4] 叶超平,陈喜新.发电机定子测温元件老化的补救措施[J].华电技术,2011,33(06):52-54.

作者简介:姜运(1990.07-),男,汉族,湖南邵阳人, 硕士研究生,工程师,研究方向:水电厂生产与运行 维护。

(上接第60页)

表 4 均流器结构各主要部件最不利截面应力评定 / MPa

工况	部件名称	σ1	$\sigma_1 + \sigma_2$	评定结果	工况	部件名称	σ_1	$\sigma_1 + \sigma_2$	评定结果
B 级 工况	均流器法兰	6.76 < 117	22.80 < 175	合格	D级 工况	均流器法兰	13.00 < 175	28.80 < 263	合格
	圆筒 1(外筒)	3.69 < 117	12.80 < 175	合格		圆筒 1(外筒)	7.30 < 175	16.40 < 263	合格
	圆筒1(内筒)	0.96 < 117	2.08 < 175	合格		圆筒 1(内筒)	1.45 < 175	2.49 < 263	合格
	中心圆筒	2.02 < 117	5.54 < 175	合格		中心圆筒	3.49 < 175	7.02 < 263	合格
	叶片 1(外层)	5.46 < 117	5.81 < 175	合格		叶片 1(外层)	6.65 < 175	7.00 < 263	合格
	叶片 2(内层)	1.10 < 117	1.56 < 175	合格		叶片 2(内层)	1.55 < 175	2.20 < 263	合格
	加强筋	1.07 < 117	4.76 < 175	合格		加强筋	2.32 < 175	5.95 < 263	合格

参考文献:

[1] 韩壮,马杰,周刚,等. 基于 DNN 与 PCA 的核动力装置故障诊断方法研究 [J]. 兵器装备工程学报,2022,43(11):147-153.

[2] 郭筱曦,田岱,朱安文,等.国外空间核动

力装置应用安全机制分析及启示 [J]. 核科学与工程,2022,42(05):1212-1221.

[3] 核工业标准化研究所. 核空气和气体处理规范 设 计和制造通用要求:NB/T 20038-2011[S]. 北京:原子 能出版社,2011.

- 64 -