应用六西格玛提高光亮退火产品的成材率

胡尚举1 孙郁瑶2 刘建忠1

(1 山西太钢不锈钢精密带钢有限公司 山西 太原 030006; 2 中国工业报社 北京 100041)

摘要:本文主要针对光亮线产品存在的质量缺陷,运用六西格玛 DMAIC 流程进行质量问题的系统研究及改进,通过对质量问题界定、测量,针对测量结果对根本性原因进行分析,通过对炉温、速度、冷却风机风量等关键因子进行控制改进,实现对整个工艺过程的优化,成材率提高到99%,取得了一定的成效。

关键词: 六西格玛; 质量控制; 成材率

0 引言

六西格玛管理是持续改进业务流程和追求卓越绩效的改进方法体系,以消除产品缺陷,降低企业成本,提高客户满意度为最终目的,从而提升企业的综合竞争力和市场占有率。

国内某钢铁企业主要生产 0.02 ~ 0.5mm 的超薄不锈钢带,应用于航空航天、医疗电子等高精端领域,对带钢的表面和内部性能,如耐蚀性、焊接性、延伸率等提出了更高的要求。光亮退火工序直接决定着带钢的表面质量和钢带的性能,2020 年全年光亮退火线因生产过程中的表面氧化、性能不均、擦划伤、拉边等质量缺陷造成的切损共 246t,相当于总产量的 4%。这不仅导致客户不满意度上升,还直接影响精带产品的市场占有率,研究如何提高光亮线的成品成材率显得至关重要。

1 项目实施

项目的实施遵循 DMAIC 流程,通过对缺陷进行定义,使用鱼骨图、FMEA、DOE 等工具,查找重要因子进行改善。

1.1 界定阶段

统计 2020 年 1 月至 2021 年 1 月光亮退火线的成 材率平均值为 96%,通过对各种原因导致的缺陷进行 分析,结合顾客的需求和精带战略发展目标,项目目 标成材率定为 99%。将大 Y 细分为 3 个小 y,钢板的 表面光亮度、钢板的性能和钢板的表面光洁度。组建 项目团队、对成员角色分工,确定了项目推进计划。

1.2 测量阶段

本阶段在界定阶段的工作基础上,进一步明确Y的测量,通过收集X和Y的相关数据,定量化的分析Y。 本阶段将使用过程分析工具和图形分析工具,进行过程能力分析。

项目团队运用头脑风暴法,从人、机、料、法4个方面,找出造成质量问题的各种潜在原因(表1)。

表 1 因果矩阵表

评分标准: 0= 与过程结果无关 1= 与过程结果仅有轻微影响 3= 与过程结果有中度影响 9= 与过程结果有直接或重大影响

0- 为过往归来有个及影响 9- 为过往归来有直按线里八影响									
		输	出变量						
序号	输入变量	10 8		6	输出重要度				
		光亮度	性能	表面					
1	工艺制定		9	1	78				
2	张力输入		3	9	78				
3	速度输入		9		72				
4	焊接不牢	3	9		102				
5	脱脂效果	9			90				
6	炉温		9		72				
7	钢带运行	1		9	64				
8	来料板型	1		9	64				
9	氢气露点	9			90				
10	氢气氧含量	3	3		54				
11	氮气露点	3	3		54				
12	氮气氧含量	3	3		54				
13	张力		9		72				
14	速度		9		72				
15	通讯	3	3	3	72				
16	辊道表面	3		9	84				
17	炉压	9	3		114				
18	冷却段炉灰	3		9	74				
19	冷却风机风量		9		72				
20	卷取			9	54				
21	开卷			9	54				

通过做 C&E 矩阵的 pareto 图,对 21 个与光亮线成材率有关的输入因子进行分析,从中筛选出对结果影响 80%以上的、与成材率关系最密切的作为关键输入,进行失效模式分析,对失效模式中占 80% 份额的重要因子进行快速改善(表 2)。

快速改善后进行二次 FMEA (图 1), 找到了影响

80%的关键因子,将此6个关键因子确定为A阶段分析验证的项目输入。

通过 M 阶段的快速改善后,从过程能力分析看,均值 97.32(增长 1.32%),较之前有了较大的增长,但仍偏离目标较远。

1.3 分析阶段

通过对前期测量阶段两次 FMEA 后重要的因子进行进一步的假设判断,通过数据分析(表 3)寻找问题

的根源,针对具体的问题实施改进,验证改进效果。

该进段通过运用单因子方差分析对 X 影响进行分析,对于氢气露点、氢气氧含量、张力的影响改进方向明显,已进行了改善。对于因子炉温、速度、冷却风量下一步进行 DOE,根据实验相关数据进行分析。

1.4 改讲阶段

通过 A 阶段的验证与因子分析, 确定了温度、速度、冷却风量 3 个因子是导致成材率低的关键因子。本阶

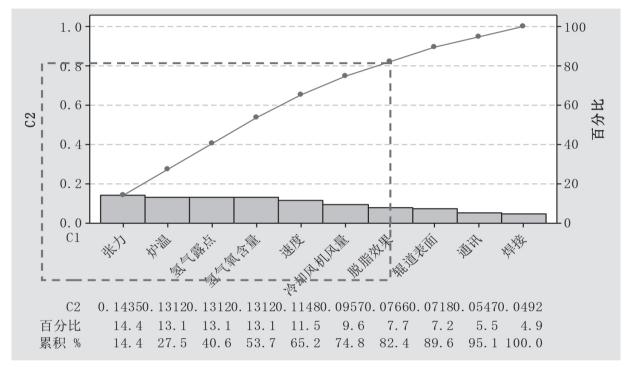


图 1 二次 FEMA 分析的 pareto

表 2 快速改善对策

序 号	改善 项目	实施对策	责任人	完成 日期
1	脱脂	①将之前采用的固态脱脂剂更换为新型的液态脱脂剂; ②脱脂段 5 组挤干辊每月利用检修时间更换一次,将更换后的挤干辊送修理公司修理; ③脱脂段的加热器定期进行清理,将加热器表面的水垢和污物清洁,提高加热器的效率	梁新亮	2013.6.6
2	焊接	①焊接之前检查料的头尾部,如果发现厚度超标,存在氧化等问题时,及时进行切除;②定期对焊轮和焊接极板打磨,严重磨损的及时更换;③优化焊接程序,根据不同品种的钢带,设定相关的焊接电流,焊接时间,焊轮压力;④定期检查焊机水箱的水位,缺水时及时补水;⑤焊机前后增加自由辊,防止钢带表面擦划伤	邓小年	2013.6.23
3	辊面	①对于损坏的密封辊及时更换; ②定期对密封辊的轴承进行加油加脂; ③针对冬天气温低,对密封辊的减速箱外面增加暖风机进行加热,防止减速机转速不同步	王向宇	2013.7.1
4	通讯	①更换 profibus 插头并更改原有的链路,在链路中增加中继器; ②重做接地系统	张国星	2013.7.12

表 3 分析阶段数据

	输入					
因素	因素 测定方法		缺陷	测定 方法	责任 人	时间
氢气 露点	氢气 露点仪		表面氧化			
氢气氧含量	微氧含量检测仪		表面氧化			
速度	速度仪表	邓小年	性能不均	检化验室仪器	廖席	8 ~
炉温	热电偶	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	性能不均	检测		10月
冷却 风量	速度仪表		性能不均			
张力	GDC 软件检测		表面划伤			

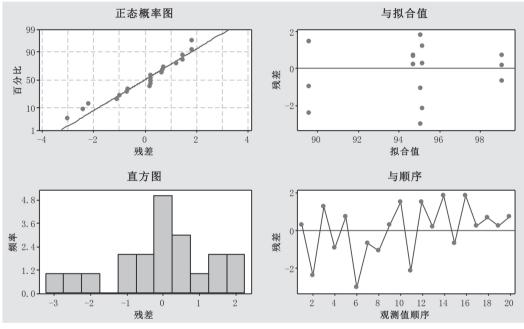


图 2 不显著剥离后成材率残差图

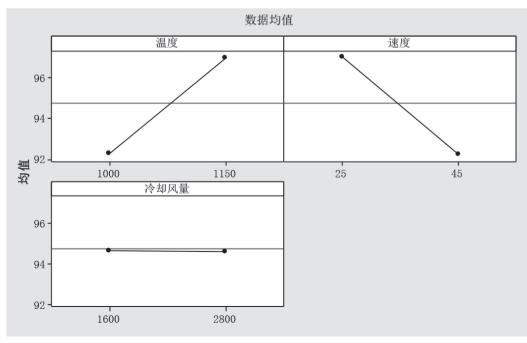


图 3 主效应图

段需通过 DOE 进一步确定并进行改善。

本实验选取 304 奥 氏体不锈钢作为样本, 厚度为 0.4mm。三因子 两水平设计,四个中心 点,复制两次,共做了 20 次实验。对不显著项 进行剥离后的残差分析 见图 2。

- (1) 观察残差对于 成材率的拟合值的散点 图,此图属于正常;
- (2) 观察残差的正态性检验图,残差符合正态分布,且做了正态性检验 P-VALUE=0.341 > 0.05,因此可以认为残差是正态的。

由残差分析,可以 判断剥离后的实验模型 合适。

图 3、图 4 所示为成材率主效应图和交互作用图。从图中可以看出,因子炉温和因子速度对于响应变量成材率影响很显著,而因子冷却风机风量对相应变量成材率的影响不显著。

1.5 控制阶段

将作业指导书纳入 作业标准和受控的文件 体系,建立过程控制系 统,确定关键控制点、 控制参数和控制方法(表 4),对改善效果进行跟 踪。 通过编制标准化文件,将项目的成果持续推进到今后的生产中。

对 Y 的过程能力进行分析,通过 11 月份按时间顺序的 SPC 控制图 (图 6) 可以看到整体上过程稳定受控,符合控制要求。

经过部分改善措施后,11月带钢光亮线成材率均值99.15(超出目标值0.15%),Cp值1.17,Ppk值0.59,

两者之间的差值减小(图7)。整个过程已经达到并超出目标,过程能力充足,效果显著(图8)。

2 项目实施结果

经过全部改善措施后,11月带钢光亮线成材率达99.15%,较改善前成材率(96%)有显著的提高。

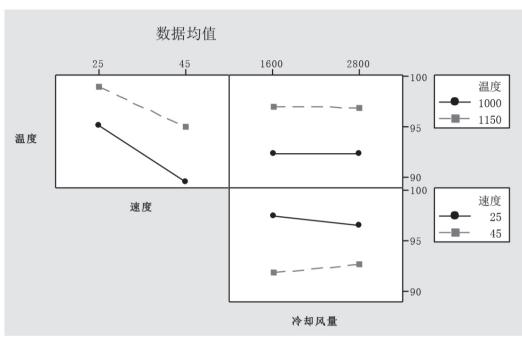


图 4 交互作用图

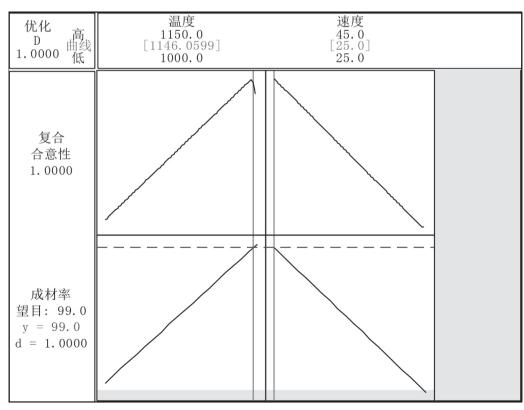


图 5 相应变量优化器输出结果图

3 结语

通过改进项目的实施,掌握了实验设计、 FEMA分析、假设检验、方差分析、回归分析、假设检验、方差分析、回归分析、统计过程控制(SPC)等科学的质量改进方法,为企效于不今后的完善数据收集,对的路下不会的完善进行更精细化的路,将大西格玛的思路,将大西格玛的思路和方法进一步融入工作中。

参考文献:

[1] 徐猛,徐尚.精益六 西格玛方法论概况[J]. 机械工业标准化与质量,2020(11):33-36.

[2] 王帅,陶凤和,贾长治,等.精益六西格玛在机械修理装配质量控制中的应用[J].现代制造工程,2012(5):126-130.

[3] 施 亮 星 , 何 桢 , 张 敏 . 应用六西格玛改进不锈钢产品的表面质量 [J]. 管理技术 , 2008 (8):102-105.

[4] 赵晓明. 六西格玛方法在不锈钢表面质量改进中的应用 [D]. 天津: 天津大学,2007.

[5]Blain Graphenteen.

A Study in the Application of SixSigma Process
Improvement

表 4 控制计划表

产品编 产品描	划编号: JD 号: 03 述: 退火料 : 冷轧厂	-03		关键联系人: 胡尚举 日期: 2013.11.2 修订日期: 核心小组: 质量改善小组 客户工程部门批准/日期: 供应商批准日期: 客户品质部门批准/日期: 技术部批准: 2013.11.3 其它批准日期:												
过程	过程名称 / 操作描述	设备	特性		特殊	方法										
控制						特性	规格	评估测量	样本		控制方法	反应计划				
编号			编号	产品	过程	分类	界限	技术	量	频率	フエいノノベ					
15	焊接	焊 机		焊后原 料	焊接缝 抗拉强 度		大于 500MPa		头尾	每卷	焊接时严格按照 焊接工艺执行, 头尾处进行切除	当发现焊接不牢时, 应切除后重新焊接, 避免焊接不牢的接 头进入后续工序				
16	脱脂	脱脂机		清洗后钢带	清洗后 表面残 油量		单面小于 5mg/m²	擦拭后称重	过程抽 检	每卷	严格控制脱脂剂 浓度和除盐水的 清洁度,保证清 洗效果	当发现超出范围时 及时调整				
18	退火	退火 弗炉	退火 弗		退火后 钢带	表面光亮度		无氧化	目测	过程抽 检	每卷	控制炉内的露点 和氧含量的值, 不能超标	露点高时及时停止 催化转化装置			
				炉温	炉温精 度		±5°C	热电偶测 量	实时监 控	每卷	炉温通过 PID 进 行控制	控制精度降低时及 时校准电位计				
19	传动	道 —— 传动	传动			報道			表面清洁度		摩擦系数 大于 0.85	摩擦系数测试仪	每根辊	每月	月检修时测试每 根辊子表面的摩 擦系数	摩擦系数不合格的 辊子及时更换
				张		张力	张力 精度		张力精度 ±10N	张力计检测	实时监 控	每卷	变频器闭环控制	张力精度降低时及 时调整编码器		
					速度	速度精度		速度精度 ±1m/min	编码器检 测速度值	实时监 控	每卷	变频器闭环控制	速度精度降低时及 时检查辊道和调整 编码器			

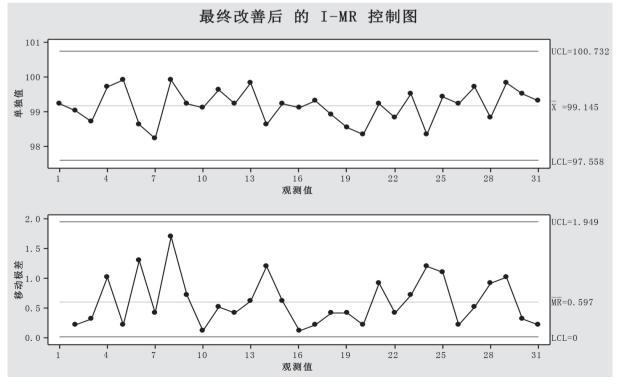
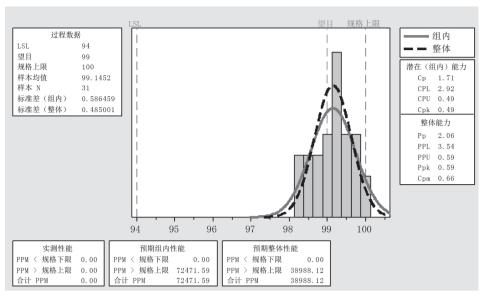



图 6 SPC 控制图

图 7 改善后的过程能力分析

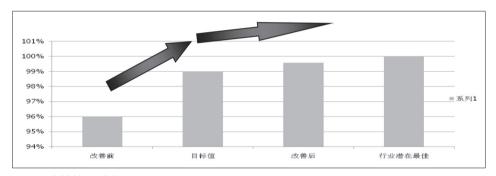



图 8 改善前后对比

Methodology to a TransactionalProcess. Ann Arbor New York: ProQuest Information and 1. earning Company, 2003: 5[2009. 10. 15]. Inspec.

[6] Theodore T. Allen. Introduction to engineering statistics and six sigma: statistical quality control and design of experiments and systems, 2006, London: Springer.
[7] Gob T N. A control chart for very high yield processes. Quality surance, 1987, 13:18-22.

作者简介: 胡尚举(1983-), 男, 满族, 博士研究生, 高级工程师, 研究方向: 复杂系统的建模与仿真、 电力电子与电气传动。

