喂丝机的故障分析与改进

陆建龙

(江阴兴澄特种钢铁有限公司 江苏 江阴 214400)

摘要:喂丝机是炼钢工艺中使用的一种新型设备。本文分析了喂丝机组成、参数及工作原理,以及喂丝机导线槽卡线故障与原因,并针对喂丝机卡线的实际情对导线槽进行了改进。同时,对喂丝机使用过程中的其他故障也进行了描述及改进。 关键词:喂丝机;圆形截面;齿形轮面;曲率半径

0 引言

喂丝机主要用于将铝线或合金包芯线按设定的长度, 以设定的速度喂入钢液深处,使之在钢液中均匀弥散,达 到脱氧、改变夹杂物形态、微调成分等目的。使用喂丝机 可有效改善劳动条件,降低劳动强度,准确控制合金成份, 实现炉外作业自动化,提高钢液质量,降低成本,消除浪费, 确保钢材优质化。因此,使用好、维护好喂丝机就显得尤为 重要。

1 喂丝机的描述

以分厂 LF 炉、RH 炉 采用的 德国 VOCK 公司的 $FMS52/2 \times 2-300$ 型四线喂丝机为例。

喂丝机主要由驱动装置、压线装置、导向装置、气动控制系统等组成。驱动装置包括电机、减速机、主动轮等; 压线装置包括压线轮、气缸等;导向装置包括导线槽、导管等。如图 1 所示。

喂丝机的主要参数:

驱动电机: 4×7.5kW

变频器: 2×30kW

电源: 380V/50Hz

喂线线规格: 包芯线 Φ 9 ~ 21mm, 铝线 Φ 10 ~ 16mm

压线轮直径: Φ295mm

主动轮直径: Φ295mm

压缩空气最小压力: 0.4MPa

喂丝机的工作原理:

主动轮直接安装在减速机两侧的输出轴上,通过变频 器控制电机转速,实现动力输出,通过气动系统控制气缸 推动压线轮压紧丝线,主动轮带动丝线,实现丝线的前进、 后退,通过压线轮的转动带动与其直接连接的编码器运行, 从而实现精准计数。

2 故障分析及改进

喂丝机在使用过程中,经常发生各种故障,主要有铝 线卡线、硫线打滑、计数不准、丝线喂不进钢水等情况。

2.1 铝线卡线

铝线: 直径 Φ13mm,属于实心线,整体相对较硬。图 2 为喂丝机正常喂铝线时的工作情况,如图所示,此时铝线基本处于导线槽中心位置。

对于喂丝机喂铝线时导线槽卡线的故障, 经长期生产 使用、观察分析、设备维护, 总结出发生卡线时主要有以下

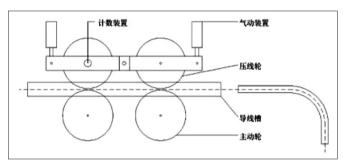


图1喂丝机结构示意图

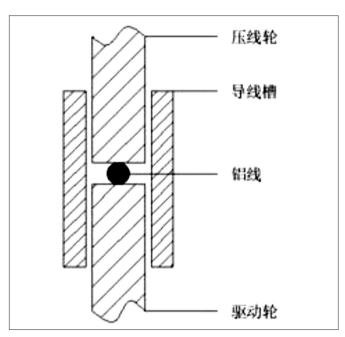


图 2 喂丝机正常工作状态

几种情况:

- (1) 导线槽的磨损。导线槽经长时间使用后,导线槽两侧发生磨损,出现凹槽,铝线在前进过程中,被挤到轮子跟导线槽之间,以至于出现轮子卡死的情况。如图 3 (1) 所示。
- (2) 导线槽安装位置存在偏差,或者是由于使用过程中导线槽两端固定螺栓松动,导致导线槽位置发生移动。轮子一侧距导线槽的距离偏大,另一侧轮子几乎紧贴导线槽,铝线在前进过程中很容易被挤到距离大的一侧,同样出现轮子卡死的情况。如图 3(2)所示。

- 66 -

2021 年第 21 期 安全与生产

(3) 压线轮的磨损。压线轮经长时间的使用后,原本水平的轮面出现了倒角、圆角,等于压线轮的表面变成了斜坡,铝线在前进的过程中受到侧向分力的影响,使铝线顺着斜坡被挤到轮子与导线槽之间,致使轮子卡死。如图 3 (3) 所示。

(4) 压线轮的晃动。压线轮原本固定在轴上,处于中间位置,固定压线轮的圆螺母出现松动,导致压线轮跑到了一侧,使得铝线很容易卡在压线轮与导线槽之间,致使轮子卡死。如图 3 (4) 所示。

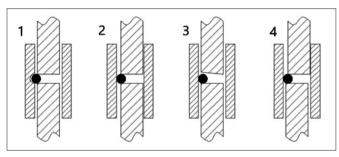


图 3 喂丝机异常工作状态

鉴于这些现象,首先考虑提高导线槽、压线轮耐磨性,但是实际使用情况并不是很理想。结合导线槽的图纸、实物,以及现场实际使用情况,发现导线槽前、中、后三个区域截面较大,铝线的相对活动范围就较大,原本就不是笔直的铝线在这三个区域很容易被挤到角落里,从而引起压线轮区域的铝线向一侧挤,长时间使用会引发导线槽、压线轮的磨损,同时也会因受力不均引起导线槽安装位置移位,压线轮松动。

如何缩小铝线在导线槽前、中、后三个区域的活动范围,成了改进导线槽主要出发点。设计采用截面为圆形的导线槽,如同喂丝机导管一样,将导线槽前、中、后三个区域截面改成圆形,如图 4 所示。铝线在该截面内的活动范围缩减到 78%,有效限制了铝线的活动区域,避免了铝线被挤到角落里,且圆形截面通道更有利于铝线前进或后退。

将改动后的导线槽整体作为固定侧,安装在喂丝机上。 导线槽盖板也作相应改动,而在驱动轮、压线轮段保持原先 盖板尺寸不变。按照改进后的图纸,制作了新的导线槽备件。

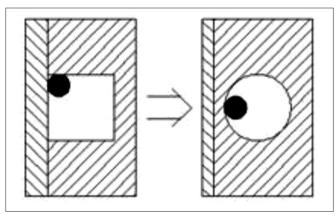


图 4 喂丝机导线槽截面对比图

将此备件安装在分厂 2#RH 一号工位的喂丝机的 3# 喂丝孔上,对备件进行喂铝线试用。1周内,各班操作人员均反映 3# 喂丝孔喂线情况正常,喂丝机未出现导线槽卡丝故障,但是,整筐铝线喂结束后,在更换新线时,铝线容易顶着导线槽,不容易穿进导线槽孔内。随后,在进、出口进行倒圆角,形成喇叭口形状,有效解决了穿线不易的情况。同时,对导线槽进行表面淬火,以此来提高导线槽的硬度,增强耐磨性。

经长时间的使用证明,改进后的导线槽,在2个月内没有出现过卡线的情况。同时,对于原先不能正常使用的纯钙线(直径:Φ9mm,属于实心线,与铝线情况类似),也能正常喂线,拓宽了喂丝机的使用范围。

同时,在喂丝机进线口前加装一段较长的导向装置,提前对丝线进线矫直,可以减轻丝线对进线口、导线槽的磨损,有助于减免卡丝情况的发生。

2.2 硫线打滑

硫线: 直径 Φ 13mm,属于包芯线,内部硫粉容易溢出, 非常容易造成芯线打滑。喂丝机打滑主要从增大芯线与主动 轮、压线轮之间的摩擦方面入手。

- (1)增加气缸的工作压力。适当调大压缩空气压力至0.45 ~ 0.55MPa,可改善喂丝机硫线打滑情况。
- (2)增加压线轮表面摩擦。原先喂丝机的压线轮轮面平整,而主动轮轮面为齿形结构。现将压线轮轮面也改为齿形结构,可有效增加轮面与硫线之间的摩擦,避免打滑现象的发生。将改进后的压线轮进行齿面淬火达 HRC55~58,以提高齿形轮面的硬度,增强压线轮的耐磨性(见图 5)。同时,维修人员需要定期对喂丝机主动轮、压线轮轮面进行清洁,保证喂丝机正常运行。

图 5 喂丝机压线轮的对比

2.3 计数不准

喂丝机计数不准容易造成喂入钢液的丝线量不足或者 丝线量超标,导致钢液成分不达标或者元素出格,降低了钢 液的质量,甚至可能造成钢液报废。计数不准主要有以下两 个原因: 丝线打滑和编码器故障。

丝线打滑的情况及措施在2.2中已作介绍。

编码器故障分为两种情况,即编码器本身计数不准,

- 67 -

以及与编码器连接的轴不直导致编码器计数不准。

编码器本身计数不准只需更换新编码器即可。现场检修人员在处理喂丝机卡线、打滑过程中拆卸导线槽盖板时,磕碰到编码器,造成编码器与压线轮连接的轴弯曲,从而影响编码器的正常工作。针对这一情况,在编码器易受到磕碰的方向加焊防护板,加强编码器的防护。另外,对编码器的安装轴也进行整改。原先的安装轴与压线轮轴是一体的,弯曲的安装轴在无法矫正的情况下只能整体更换,存在不必要的浪费。整改后的安装轴为可拆卸式,通过两颗内六角螺栓固定在压线轮轴上,更换比较方便。

对于编码器计数不准的问题处理过后,需要现场进行 喂线核实计数是否准确,确认无误后方可交付给生产班使 用。

2.4 丝线喂不进钢水

喂丝机的喂线速度过低是丝线喂不进钢水的主要原因。 针对不同的丝线,设定的速度也不同。一般速度值设定在 100~150m/min 范围内,包括硅钙线、碳线、钛铁线、锰线、 铝线、硫线等。

喂丝机导管的作用是将高速前进的丝线导入钢液之中, 喂丝机导管的选型、安装正确与否,对喂线效率有很大的影响。喂丝机导管的出口必须垂于钢液面,且与钢液面距离 不宜过大。喂丝机导管的内径一般在 48mm 左右,导管的 曲率半径一般在 1000mm 左右,管径太小或者曲率半径过 小都会增加进线阻力,影响喂线速度。适当增大导管曲率半 径可有效减小进线阻力,同时也可以减少喂丝机卡线发生频 率

3 结语

喂丝机作为炼钢精炼工艺流程中的重要设备,卡线、 打滑等问题影响着喂丝机的正常工作,通过采用改造的圆形 截面的导线槽来减少喂丝机卡线故障的发生,改用齿形轮 面的压线轮来减少喂丝机打滑故障的发生,都取得了不错 的效果。另外,在喂丝机使用过程中,要会观察、总结、分 析各种故障产生的原因,提出合理的解决方案,正确使用和 维护好喂丝机,这样就可以做到基本杜绝以上故障的发生, 提高生产效率。

参考文献:

[1] 黄鹤汀. 机械制造装备 [M]. 北京: 机械工业出版社.2005. [2] 杨谷青. LF 精炼炉喂丝机导丝系统的改进及应用 [J]. 南方金属,2015(03):21-23.

[3] 贾国锋. 钢包喂丝机的改进 [J]. 浙江冶金 ,2007(03):49-52. [4] 于雷 .ZDQ- ${\mathbb H}$ B 喂丝机压下轮架系统改造 [J]. 冶金与材料 ,2018(04):176-176.

[5] 安京. 喂丝机喂丝速度的影响因素及对策 [J]. 机械工程师, 2004(12):54.

作者简介: 陆建龙 (1984.12-) , 男, 汉族, 江苏人, 学士, 助理工程师, 高级技师, 研究方向: 机械研发。

广告征订

版位 Format	价格 Price(RMB)
特殊版位 Specified Ads. Position	
封面	25,000
封二	16,000
封三	12,000
封底	18,000
扉一	15,000
扉二	10,000
后扉一	12,000
后扉二	9,000

版位 Format	价格 Price(RMB)	
正常版位 Editorial Page		
编辑页	10,000	
编辑页跨页	15,000	
1/2编辑页	5,000	
1/3编辑页	3,500	
1/4编辑页	2,500	

注: 所有特殊版位广告均为4C广告,正常版位广告均为黑白色;所有广告需提供成熟设计稿,如需编辑部制作需单独收费。

优惠说明:

在原价格基础上,连续预定3期,优惠**8%**;连续预定6期,优惠**15%**;连续预定12期,优惠**20%**;连续预定18期,优惠**30%**;连续预定36期,优惠**40%**。另,如提前一次性付款,可在享受优惠的基础上享受**8%**的额外折扣。

广告预定热线: 010-6741 0664 / 1368 332 6370