SLM 成形 AlSi10Mg 合金金相组织研究

谭乐 柴鲜花 高佳旺 (贵州航天天马机电科技有限公司 贵州 遵义 563000)

摘要:采用选择性激光熔化成形方法制备 AISi10Mg 合金,并采用打磨 + 抛光 + 腐蚀金相处理工艺制备合金金相形貌, 研究不同工艺对金相形貌质量的影响。研究结果表明:采用 5000 目砂纸将试样进行打磨,w0.5 金刚石抛光膏进行抛光, Keller 试剂腐蚀 20s 后,合金金相形貌无明显划痕、组织形貌清晰可见。合金熔池呈长条状,不同层熔道存在明显搭接区。 关键词: SLM; 抛光; 金相组织

0 引言

AlSi10Mg 合金具有密度小、比强度高、耐腐蚀性能好 等优点,是航空航天器件的主要材料。采用传统铸造方法难 以制备结构复杂零件,且成本高,周期长。随着航空航天 的快速发展,传统铸造方法难以制备结构复杂的航空航天零 件。选择性激光熔化成形技术是一种新型的增材制造技术, 成形零件内部晶粒组织细小均匀,大大提高了零件的宏观力 学性能;可成形内部结构复杂的零件,且能在满足零件性 能的要求下,进行轻量化结构设计,大大减轻零件的重量。 因此,采用选择性激光熔化成形技术制备 AlSi10Mg 合金, 对于制备满足航空航天领域结构轻量化且性能高的复杂薄 壁零件具有极大的研究及应用价值。

本文采用选择性激光熔化成形技术制备 AlSi10Mg 合 金,研究不同的金相处理工艺对合金金相形貌质量的影响规 律,并分析了合金金相形貌组织。

1 实验方法

实验粉末选用气雾化法制备的 AlSi10Mg 合金粉末, 粉末近似呈球形,尺寸在 20~63 µ m 之间。成形设备选用 SLM300 选区激光熔化成形机,激光器为光纤激光器,功率 为 400W。为研究不同目数砂纸、不同型号抛光剂对式样金 相形貌的影响,采用 600~2000 目砂纸对式样进行粗打磨, 2500 目对式样初步细打磨,研究 3000 目、5000 目砂纸对式 样打磨后划痕去除的难易程度,采用 w3.5 的抛光剂对式样 进行粗抛光,研究 W1.5,W0.5 抛光剂对式样的抛光效果。 采用 Keller 试剂 (95vol.% 蒸馏水, 2.5vol.% 硝酸, 1.5vol.% 盐酸,1vol.% 氢氟酸)对试样进行腐蚀,研究不同腐蚀时间 对金相形貌的影响规律,腐蚀时间为 10s、15s、20s、25s。

2 实验结果

2.1 不同工艺组合对试样金相形貌的影响

图1所示为不同工艺组合下试样的金相形貌。从图1 (a)可以看出,在试样金相形貌中存在明显的划痕(图中 实线箭头所示),同时在孔隙的边缘存在明显的拖尾(图中 虚线箭头所示)。从图1(b)可以看出,金相形貌中划痕 相对减少,但在孔隙边缘仍存在有较明显的拖尾(实线箭头 所示)。从图1(c)中可以看出,金相形貌中无明显划痕, 孔隙边缘拖尾减少。从图1(d)可以看出,金相形貌中无 明显划痕,孔隙边缘仅存在少量的拖尾。比较经不同目数砂

图1不同工艺组合试样金相形貌

纸打磨,经同种抛光剂抛光后的金相形貌图(图 a、c 所示) 发现,经 5000 目砂纸打磨抛光后,金相形貌划痕较少。分 析其原因可能是,通常情况下,只打磨到 3000 目砂纸,而 SLM 成形铝合金相对"较软",在打磨至 5000 目砂纸时, 可明显看到合金的熔池形貌,因此经过简单抛光后可有效去 除表面划痕。在抛光过程中,由于 w3.5 金刚石研磨膏颗粒 较粗,在抛光的过程中,若用力较大,沿同一方向抛光时间 过长,在孔隙边缘容易产生较大的拖尾,若先采用 w1.5 抛 光膏,再采用 w0.5 的抛光膏,拖尾难以去除,且会出现不 同方向的拖尾(图 a、b 所示),因此直接采用 w0.5 抛光膏 进行抛光,效果较好。

2.2 腐蚀时间对金相形貌的影响

图 2 所示为不同腐蚀时间金相形貌图。图 2 (a) 所示 为腐蚀 10s 的金相形貌图,从图可以看出,图中部分区域内 熔池分辨不明显,腐蚀效果不好(图中箭头所示)。图 2 (b) 所示为腐蚀 15s 后金相形貌图,熔池分辨较清晰,但仍存在 部分区域腐蚀效果不明显(箭头所示)。图 2 (c)所示为 腐蚀 20s 后金相形貌,图内熔池清晰可见,搭接区分辨较明 显,腐蚀效果较好。图 2 (d)所示为腐蚀 25s 后金相形貌, 部分区域存在过腐蚀现象(图中箭头所示)。分析其形成原 (下转第 102 页)

2021/7/30 22:07:05

超出压力继电器上限值,导致系统报警。针对以上问题,在 系统中增加了安全阀,当系统压力急剧上升时,安全阀打开 溢流,使系统压力不高于15MPa,同时压力继电器增加到2 个,用来检测夹紧是否到位,压力继电器1检测低压压力, 设定值为12MPa,当系统压力低于12MPa时,换向阀得电, 系统会向夹紧缸供油,保证轧机的稳定性;压力继电器检测 高压压力,设定值为13MPa,当系统压力达到13MPa时, 换向阀失电,恢复到中位,停止向夹紧缸供油,保证轧机平 稳、系统可靠,经过实际使用,效果良好。

通过对原有系统改进,现控制系统满足实际工况,运 行情况良好。如图 2,为改进后系统控制图。

4 结语

通过对轧机液压系统的组成及工作原理进行分析,并 分析原系统存在的缺陷,在此基础上提出合理的改进措施。 通过以上改进,轧钢线液压系统满足现场工况对设备的需 求,增加了系统的可靠性,减少了系统故障,降低了重大安 全事故发生的可能性,保证了轧钢线稳定生产。

参考文献:

[1] 雷天觉.液压工程手册 [M].北京:机械工业出版社,1990.
[2] 关肇勋,等.实用液压回路 [M].上海:上海科学技术文献出版社,1982.

[3] 杨文华. 液控原理 [M]. 北京: 学术书刊出版社, 1990.

[4] 左健民. 液压与气压传动 [M]. 北京: 机械工业出版 社,2005.

[5] 官忠范. 液压传动系统 [M]. 北京:机械工业出版社,1997. 作者简介:常建宙(1991.10-),男,汉族,山西朔州人, 助理工程师,本科,主要研究方向:轧钢设备管理,冶金 设备管理。

(上接第 99 页)

(a) 10s (b) 15s (c) 20s (d) 25s

图 2 不同腐蚀时间金相形貌

因,Keller 试剂腐蚀制备金相的过程属于化学腐蚀。根据化 学腐蚀机理,由于纯金属及单相合金晶界上原子排列不规 则,具有较高的自由能,所以晶界易受腐蚀而呈凹沟,使 组织显示出来,再显微镜下可以看到多边形的晶粒。若腐 蚀较深,则由于各晶粒位相不同,不同晶面溶解速率不同, 腐蚀后的显微平面与原磨面的角度不同,再垂直光线照射 下,反射进入物镜的光线不同,可看到明暗不同的晶粒。 采用 Keller 试剂腐蚀 AlSi10Mg 合金,其本质时化学溶解的 过程,腐蚀时间越长,溶解越多,所能看到的晶粒越明显, 但当时间过长时,合金溶解过多,形成过腐蚀。

从图 2(c) 可以看出, AlSi10Mg 合金熔池为不规则长条 状,相邻成形层熔池间存在 67°的转角且不同层间存在明 显的搭接区。在熔池内部主要由于温度梯度小,溶质分布较 均匀,在界面前沿形成极大的过冷度,形成大量的晶核;同 时快速凝固又会抑制晶粒的长大,进而在熔池内形成细小胞 状晶。在熔池边界,由于激光扫描线对已凝固区域进行重熔, 发生再结晶,晶粒再次进行形核长大,形成粗大的晶体。

3 结语

采用 5000 目砂纸对 AlSi10Mg 合金试样进行打磨, w0.5 金刚石抛光膏进行抛光,Keller 试剂腐蚀 20s 后,合金 金相形貌无明显划痕、组织形貌清晰可见。合金激光熔池呈 长条状,不同层熔道存在明显搭接区。在熔池内部主要是细 小的晶体,熔池边界主要是粗大的晶体。

参考文献:

[1] 张文奇,朱海红,胡志恒,等. AlSi10Mg 的激光选区熔化 成形研究 [J]. 金属学报,2017(8).

[2] 章文献.选择性激光熔化快速成型关键技术研究[D]. 武汉:华中科技大学,2008.

[3] 赵晓明,齐元昊,于全成,等. Al Si10Mg 铝合金 3D 打印 组织与性能研究 [J]. 铸造技术, 2016,37(11).

作者简介:谭乐(1993.02-),男,汉族,山西运城人,硕士,助理工程师,研究方向: 增材制造。