某型号吸油烟机可靠性设计分析

蔡茫 饶玉莎 杨敬豪

(美的集团股份有限公司 广东 佛山 528311)

摘要:运用可靠性分析方法,对某型号吸油烟机进行了可靠性评审。针对高风险项目制定可靠性试验方案。对关键零部件、试制试产整机进行测试验证,有效识别了核心关键零部件的可靠性风险点,并通过失效分析与改进以降低关键零部件的维修率。通过后续的持续市场跟踪,确保问题关闭的有效性。从而减少了设计更改次数,缩短了开发周期,并有效提升了产品质量。

关键词: 吸油烟机; 可靠性规划; FBD&DFMEA; 可靠性试验

1 项目背景

吸油烟机作为日常家用电器,用户对吸油烟机的质量都有更高的要求。为提升产品的市场竞争力,立项开发一款新形态吸油烟机。产品企划书要求可靠性目标:产品设计寿命10年,上市后首年故障率7444ppm。

2 可靠性设计分析工作概述

项目可靠性设计分析的主要工作内容包括:针对可靠性目标进行可靠性评审,包括产品设计规格书转化、可靠性规划、FBD及 DFMEA分析;针对高风险项目制定可靠性试验方案及对关键零部件、试制试产整机进行测试验证。

3 可靠性设计要求

应用可靠性管理和技术方法,识别继承物料可靠性 风险点及新设计方案的失效模式和影响,设计应对方案 和验证方法。以达成产品设计寿命 10 年,整机和零部 件商业包修时长 6 年,上市后首年故障率 7444ppm 的立 项目标。确定关键零部件及验证试验,进行寿命测试评 价及故障率测试评价。

通过可靠性规划进行可靠性风险点识别,确定关键零部件,明确可靠性设计和控制的重点,提高关键零部件的可靠性。通过 FBD 进行功能结构图构建,利用界面影响矩阵分析识别出的风险项。通过 DFMEA 分析,分析可能的失效模式及造成的影响,评估失效影响的严重度,分析引起该失效模式的根因 / 机理; 并根据设计预防措施及历史故障表现,评估发生度,根据当前检测控制手段,评估难测度,针对重点风险提出设计对策或针对性 / 差异化验证方案。

4 可靠性设计分析具体步骤

根据总体要求,依据产品企划书撰写产品设计规格

书,实施可靠性规划,同时进行FBD&DFMEA分析,确定薄弱环节,并制定可靠性试验方案。

4.1 产品设计规格书转化

组织相关项目成员在产品企划书的基础上,转化编制产品设计规格书。产品设计规格书包括对产品设计与操控规格、合规与安规、仓储物流规格、使用环境规格、用户使用习惯规格、售后规格好可制造性规格等方面的全面描述。

4.2 可靠性规划

可靠性规划包括可靠性风险点、可靠性目标/方案、 高风险环境因素、关键跟踪工作项目、关键活动计划和 可靠性综合评价。

4.2.1 可靠性风险点

进行继承机型 2 ~ 3 年整机累计市场维修率分析。 梳理整机占比≥ 80% 维修率零部件,并描述主要失效 问题如表 1 所示。

4.2.2 可靠性目标 / 方案

根据产品企划书需求,梳理整机可靠性目标,其中整机设计寿命为 10 年,整机的核心功能运行寿命为 5475h。整机预计目标年平均故障率 FCR 为 7444ppm。

4.2.3 关键跟踪工作项目

针对继承机型占比≥ 80% 零部件/组件风险内容进行根因分析,设计应对方案和验证方法,并跟踪整改闭环情况。具体设计应对方案及验证方法如表1所示。

4.2.4 可靠性综合评价

对加速后的试验时间≥ 2000h 的寿命试验,投产鉴定时要求寿命试验时间达到: 1/3 × 寿命试验时间,上市决策时要求寿命试验时间达到: 2/3 × 寿命试验时间。

对加速后的试验时间≥2000 小时的故障率试验,投产鉴定要求故障率验证试验累计试验台时时间≥1/3×试验计划总台时,且所有A/B类问题必须闭环,上市决策时要求故障率验证试验累计试验台时时间

- 88 -

表 1 继承机型占比≥80%零部件/组件及主要失效问题

风险内容 / 项目	风险点对应的根因分析	设计应对方案	验证方法(差异 化 / 针对性)	
射灯不亮	灯线与 PCB 板之间焊接时间不足,导致假焊	① PCB 焊点时间由 2.0s 调整为 2.5 ~ 3.0s;产品进行老化测试,在下灯时增加连接线检查动作,确保连接线可靠;组装车间在锁螺丝、点亮测试时增加电源线焊接可靠性检查;②生产引线口位置用热熔胶密封,避免焊点焊接不良	模拟运输及跌落	
烟管脱落(烟管故障)、烟管不良	①铝箔材料太薄; ②粘胶长度不够; ③钢丝强度不足	①增加铝箔原材料宽度,从 50mm 更改至 56mm; ②铝箔粘贴重合尺寸从 14.5mm 增加至 26mm; ③钢丝直径从 1.0mm 更改至 1.1mm; ④溶剂:胶水比例由 1:1 更改至 1:1.1	①高温环境下粘力对比测试; ②耐破、脱离力测试	
蒸汽发生器故障	①水泵线圈支架无倒角; ②蒸汽发生器纳垢能力不足; ③发热体结构导致导热不良; ④低温水泵内部水变冰,体积变大,导致水泵内部破裂	①水泵线圈支架增加倒角; ②流道更改为迷宫式流道; ③发热体与温控器传热结构更改,直接换热; ④提高水嘴模具温度,提高材料韧性	①寿命测试; ②低温破裂测试	

≥ 2/3 × 试验计划总台时,且所有 A/B 类问题必须闭环(其中,A 类问题指关键质量特性不符合规定,可能导致安规安全、合规问题或整机功能丧失。B 类问题指重要质量特性不符合规定,可能严重影响最终产品使用性能和降低最终产品寿命)。

4.3 FBD&DFMEA 分析

DFMEA(设计失效模式及影响分析) 是在产品设计阶段,对构成产品的子系统、 零件逐一进行分析,识别所有潜在的失效模式,并分析其可能的影响后果,从而预先采取必要的措施,以提高产品的质量和可靠性。

4.3.1 准备 FBD& 功能结构树

每一个产品都是由若干系统组成,而系 统是元素与关系的集合^[1]。

本产品分为抽烟系统、控制系统、照明系统、结构和外观系统以及清洗系统。每个系统又包含若干子系统。各系统之间由物质流(水、空气等)、信息流(电控制信号、光控制信号、无线电信号等)、能量流(电能、热能等)连接。功能框图 FBD 及整机爆炸图见图。

4.3.2 FBD 界面影响矩阵

通过 FBD 界面影响矩阵分析组件之间 的内部应力与外部应力的关系。识别产品全 生命周期中各种内外部应力是否对产品各组 件产生影响。本项目的 FBD 界面影响矩阵 如表 2 所示。

4.3.3 DFMEA (设计失效模式及影响分析)

参考"FBD功能结构树"与"FBD界面影响矩阵",将在功能结构树中识别出的风险项(重点针对四新、变更、继承高风险)体现在 DFMEA 表中;对 FBD 界面影响矩阵

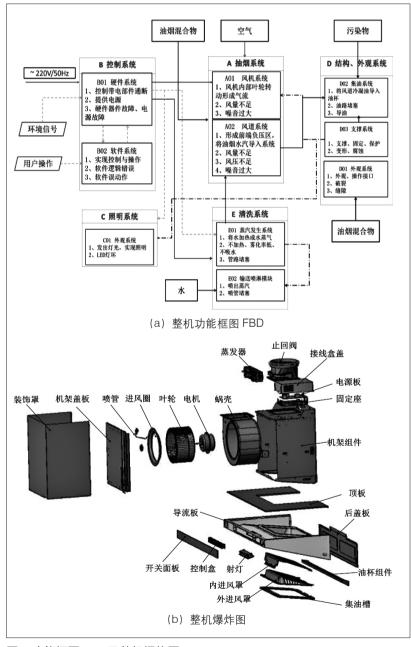


图 功能框图 FBD 及整机爆炸图

- 89 -

中识别出的内外部因素及影响,在其失效根因/机理中进行说明。

通过 RPN 评分来筛选改善的对象。当严重度 $S \ge 9$ 时,必须安排有效的整改措施,且经过充分的验证与评审,RPN 值排前 5% 位或 RPN ≥ 100 时,或当严重度 $S \ge 7$ 时需提出整改建议和改善对策。

4.4 可靠性试验方案

可靠性试验是为了解、分析、提高、评价产品的可靠性而进行的工作的总称。主要目的和作用在于:发现产品在设计、元器件、零部件等方面的各种缺陷和故障;验证研发和生产的产品是否符合可靠性要求;为评估和改进产品可靠性提供信息^[2]。

本项目针对吸油烟机制定如下可靠性试验方案: 故 障率验证试验、寿命(耐久性)试验、环境试验 & 异常 试验 (不超过 168h)。

4.4.1 故障率加速模型及计算

根据 GB 5080.4^[3] 设备可靠性试验,本项目重点验证整机系统运行故障率。可靠性验证试验方案采用定时截尾的方案,试验计算单侧置信区间。为简化计算,试验方案中样品可替代,即试验失效后需修复或替换新样口

平均故障间隔时间:

MTBF =
$$2T/x^{2}$$
 (α , D_{F})= $2 \times (A_{F} \times T_{1})/x^{2}$ (α , $2r+2$)
= $2 \times (A_{F} \times nt)/x^{2}$ (α , $2r + 2$)

预期试验时间:

 t_1 =MTBF × χ^2 (α ,D_F)/(A_F × 2n)=MTBF × χ^2 (α ,2r + 2) / (A_F × 2n)

式中: n 一试验样品数;

表 2 FBD 界面影响矩阵

应力源	应力类型	影响因素 / 应力	功能模块 / 组件										
			风机 系统	风道 系统	电源板 模块	触控显 示模块	油烟传感 器模块	照明灯 模块	外观 系统	集油 系统	支撑 模块	蒸汽发 生模块	输送喷淋 模块
			其他	其他	其他	变更	其他	其他	变更	其他	其他	其他	其他
外部应力	气候环境	温度							有				
		湿度							有				
	机械环境	振动	有	有	有	有	有	有	有	有	有	有	有
		冲击	有	有	有	有	有	有	有	有	有	有	有
	电应力环境	电压	有		有	有	有	有				有	
		电磁干扰	有		有	有	有	有				有	
	生化环境	霉菌											
		盐雾	有	有	有	有	有	有	有	有		有	有
		油污	有	有			有	有	有	有		有	有
	介质环境	水质											
	其他环境	油烟环境	有	有			有	有	有	有			有
应力 源	名称	功能描述											
内部应力	风机系统	产生负压											
	风道系统	排烟	有										
	电源板模块	电源管理及控制	有			有		有				有	
	触控显示模块	接收交互输入, 显示运行状态	有				有						
	油烟传感器 模块	检测油烟浓度	有		有								
	照明灯模块	照明											
	外观模块	外观装饰											
	导油模块	引导油						有					
	支撑模块	固定部件		有					有	有		有	有
	蒸汽发生模块	产生蒸汽											有
	输送喷淋模块	输送蒸汽											

- 90 -

t -试验时间;

 T_1 - 加速试验累计的总时间, T_1 = $n \cdot t$;

T - 等效累计试验时间, $T=A_{\rm F}\cdot T_{\rm I}$;

 $A_{\rm F}$ -试验加速系数;

r - 试验中的失效数量;

 x^2 - 卡方分布, EXCEL 中采用 CHIINV 函数计算;

 $D_{\rm F}$ - 自由度, $D_{\rm F}$ =2r + 2 (定时截尾);

 α -可接受的错误风险, α =1-置信度。

根 据 产 品 企 划 书 最 低 验 证 年 平 均 故 障 率 FCR=7444ppm,计算出故障率试验时间为 $t_1=1232h$ 。 4.4.2 寿命(耐久性)试验

烟机每天使用 1.5h, 每年使用 547.5h。设计寿命为 10 年。故整机运行寿命为 T=5475h。根据加速试验模型,整机寿命试验时间为:

 $t_2 = T \times K/A_{\rm F}$

式中: T-整机运行寿命时间;

K-经验修正系数^[4], 取 K=1.2;

AF - 加速系数(综合 A_F 计算: $A_F = A_{F \perp l \pm g} \times A_F \perp l \pm g$ 度 $\times A_{F \perp l \pm g} \times A_{F \mp k + l} \times A_{F \pm k} \times A_{F \pm k}$),根据计算得 $A_F = 4.8$ 。寿命试验样品数量 10 台,加速寿命试验时间 $t_2 = 1368$ h。

本项目还针对控制板进行寿命(耐久性)试验。针对控制板进行的重点验证项目包括:高温高湿偏置(THB)寿命(耐久性)试验(轻载,温度 85 $^{\circ}$ C,湿度 85 $^{\circ}$ RH,寿命试验时间 1000h)和温度循环寿命(耐久性)试验(额定负载,-20 $^{\circ}$ C(30min),60 $^{\circ}$ C(30min),1 $^{\circ}$ C/min,100Cycles) [5-10]。

4.4.3 环境试验 & 异常试验

将不超过 168h 的试验列入环境试验 & 异常试验项目。根据吸油烟机工作环境和运输存储状态,分别进行油路测试(模拟用户连续使用五年完成 6000ml 油路试验,样机无漏油现象,PCB 板、机体背板、导流板内表面及蜗壳外表面(除安装密封圈周边外)、机架与止回阀座周边应无漏油痕迹);加强跌落(加强跌落验证叶轮是否变形、是否能够正常运转);高低温贮存(整机放置于 $70 \degree \pm 3 \degree$ 的环境中贮存 24h;整机放置于 $(-40\pm3) \degree$ 的环境中贮存 24h);油网拆卸寿命测试(可拆部件集油槽拆卸耐久测试)[5-10]。

5 结语

该项目根据产品企划书要求,将产品企划书转化产品设计规格书、可靠性规划,同时进行 FBD&DFMEA分析,确定薄弱环节,并制定可靠性试验方案。加强质量管控,以达成可靠性指标。该新品历史机型市场维修率 11452ppm,整改后维修率 7226ppm,达成维修率目标 7444ppm;可靠性设计及方案的有效实施,减少了开发的后期变更、有效持续跟踪和改进,降低了产品售后成本。

参考文献:

- [1] 谭跃进,陈英武,罗鹏程,等.系统工程原理:第二版[M].北京:科学出版社,2017:1-3.
- [2] 李良巧. 可靠性工程师手册:第二版 [M]. 北京:中国人民大学出版社,2017:152.
- [3] 国家标准局.设备可靠性试验 可靠性测定试验的点估计和区间估计方法(指数分布):GB 5080.4-1985[S].北京:中国标准出版社,1985.
- [4] 姜同敏. 可靠性与寿命试验 [M]. 北京: 国防工业出版社,2012:269-274.
- [5] 中国国家标准化管理委员会. 产品加速试验方法:GB/T 34986-2017[S]. 北京: 中国标准出版社,2017:6-37.
- [6] 中国国家标准化管理委员会. 吸油烟机:GB/T 17713-2011[S]. 北京:中国标准出版社,2011:1-25.
- [7] 国家质量监督检验检疫总局. 电工电子产品环境试验 第2部分: 试验方法 试验 A: 低温:GB/T 2423.1-2008 [S]. 北京:中国标准出版社,2008:1-5.
- [8] 国家质量监督检验检疫总局. 电工电子产品环境试验 第2部分:试验方法 试验B:高温:GB/T 2423.2-2008[S]. 北京:中国标准出版社,2008:1-6.
- [9] 国家技术监督局. 电工电子产品环境试验 第2部分: 试验方法 试验 Ea 和导则: 冲击: GB/T 2423.5-1995[S]. 北京: 中国标准出版社,1995:1-8.
- [10] 国家技术监督局. 电工电子产品环境试验 第2部分: 试验方法 试验 Ed: 自由跌落: GB/T 2423.8-1995[S]. 北京: 中国标准出版社,1995:1-3.