中小型航空发动机稳态受感器振动校验方法研究

余柯锋 王志成 刘杰薇 (中国航发湖南动力机械研究所 湖南 株洲 412002)

摘要:本文选取了多种在中小型航空发动机试验中常用的稳态受感器结构,分别采用标准公式和有限元数 值的计算方法,对不同受感器的自振频率进行了计算。以受感器实物静频测试结果为基准,比较了采用不 同计算方法进行受感器振动校验结果的差异,为后续设计人员选择受感器振动校验方法提供了指引。

关键词: 探针; 数值仿真; 静频试验

1 概述

在中小型航空发动机的研制过程中,稳态受感器 (以下简称"探针")是获取发动机内流道参数的重要 测试手段。为准确测得发动机内流道中不同径向高度 的测试参数,需要将相应的探针伸入流道内部,具体 如图1所示。

图 1 探针安装示意图

由于伸入流道内部,因此探针在使用时会受到流道 内气流的冲击。为保证试验安全,在探针的设计过程中, 必须对探针结构进行强度校验和刚度校验,当被测试 件上带有转动件时,还必须进行探针的振动校验。本 文结合研发生产过程中的实际情况,对探针的振动校 验方法开展了对比研究,以期找出更为准确的探针振 动校验方法,提高研发生产效率。

2 研究思路

探针振动校验的主要目的是获得探针的自振频率, 确保该结构探针的自振频率(根据相关设计规范,仅 考虑1~5阶)与被测转动件稳定工作时的转频之间 留有一定的安全裕度,从而避免探针在试验过程中与 转动件发生共振,确保试验安全。

最准确获得探针自振频率的方法,是对每一支探针 进行振动测频试验,通过试验获得每支探针的实测自 振频率。但在实际研发生产过程中,由于探针数量众 多,而振动试验资源有限,对每支探针进行振动测频 试验成本太高不可行。因此,在实际的研发设计过程中, 探针进行振动校验的方法主要是通过对探针结构取相 似几何体,再利用标准公式进行计算。这种方法的优 点在于较为简便快捷,缺点在于只关注了探针的整体 外形结构,对结构进行大量近似简化,且忽略了探针 的安装固定等外部因素对振动产生的各种影响。

有限元数值计算是利用数学近似的方法对真实物理 系统(几何和载荷工况)进行模拟的一种计算分析方法, 目前在实际工程设计中已得到广泛运用。该方法计算 精度高,且能够通过计算获得试验件在各种复杂工况 下的强度、振动频率等信息。利用有限元数值计算方法, 可以将探针的具体结构和安装固定状态增加到计算过 程中,与标准公式相比,其计算模型更贴近实际情况^[1]。

本文选取多种不同结构的单支点探针(因双支点探 针在工程实际中应用很少,故本文仅考虑单支点结构), 采用对比研究的方法,以振动测频试验的实测结果为 基准值,通过对比标准计算公式和有限元数值计算获 得的探针自振频率结果与基准值之间的差距,评判两 种振动校验方法的优劣。

为保证计算时一些基本条件的一致性, 探针采用的

表 1 材料特性表

材料	密度 / (kg/m ³)	弹性模量 /Pa	泊松比
0Cr18Ni10Ti	7900	2.06×10^{11}	0.3
T2M	8900	1.28×10^{11}	0.32

材料(0Cr18Ni10Ti和T2M)特性如表1所示。

3 标准公式计算方法进行振动校验

根据标准公式可知,单支点总压受感器的 k 阶弯曲 自振频率标准计算公式为:

$$f_k = \frac{C}{L^2} \sqrt{\frac{E \cdot J}{\rho \cdot F}}$$

式中: *C* - 自由振荡固有模态常数, 1 ~ 5 阶的数值分 别为 0.56、3.51、9.82、19.2 和 31.8;

L-探针伸入流道中的长度;

E-探针支杆材料的弹性模量;

J-支杆结构的抗弯截面系数;

ρ - 支杆材料的密度;

F-探针在流道中承受的气动力。

3.1 标准公式计算简化方法

采用标准公式计算时,需根据探针结构,对其模型 做如图 2 所示的简化。

图 2 常用支杆公式计算近似图

由图 2 可知,对于常用的圆管形支杆,在使用标准 公式计算时,取其截面近似为环形圆柱管;对于常用的 腰形支杆,在使用标准公式计算时,取其截面近似为 双层矩形。

根据材料力学原理,对于环形圆管支杆,其支杆抗 弯截面系数*J*的计算公式为:

$$J = \frac{\pi D^3}{32} [1 - (\frac{d}{D})^4]$$

对于近似矩形支杆,其支杆抗弯截面系数 J 的计算 公式为:

$$J = \frac{BH^3 - bh^3}{6H}$$

在计算出支杆惯性矩 J 后,即可根据标准公式计算 出该探针的各阶自振频率。

3.2 标准公式计算方法振动校验结果

采用标准公式计算本次研究的不同结构探针所得到 的自振频率如表 2 所示。

表 2 标准公式计算振动校验结果

序 号	探针 编号	公式计算 一阶 /Hz	公式计算 二阶 /Hz	公式计算 三阶 /Hz	公式计算 四阶 /Hz	公式计算 五阶 /Hz
1	T0001-0	90.1	564.7	1579.9	3088.9	5116.1
2	T0002-0	47.4	297	831	1624.8	2691.1
3	T0003-0	248.6	1558.2	4359.3	8523.2	14116.6
4	T0004-0	44.9	281.4	787.4	1539.4	2549.7
5	T0005-0	223	1397.9	3910.9	7646.6	12664.7
6	T0006-0	155.9	977.5	2734.7	5346.8	8855.7
7	T0007-0	24.9	155.9	436.1	852.6	1412.2
8	T0008-0	273.7	1715.3	4799.1	9383.1	15540.7

4 有限元数值计算方法进行振动校验

在有限元数值计算方法研究过程中,本文采用 ANSYS 商业软件,对所有探针单独建模,计算了各型 探针在安装状态下(模拟安装螺钉紧固后的状态)的自 振频率。计算时,边界条件的设置与后续振动测频试验 时的环境条件(常温常压)保持一致。

4.1 有限元数值计算模型处理及边界条件设置

本次研究采用的软件为ANSYS19.2,采用的控件为Modal。该控件可以对物体进行模态分析,计算其固有频率。

由于探针的物理模型与实物存在一些细微区别,为 了简化计算,对部分不影响探针固有频率的细节进行 了处理,比如去除不必要的倒角、圆角,同时,原物理 模型为了加工、焊接方便,采用了公差,使各零件分离, 与实物焊接在一起的事实不符,所以对公差进行了处 理,使各零件贴合,成为一体,更加便于后续的网格绘 制(图 3)。

在开始网格绘制前,需要先在 SCDM 中处理模型, 简化不必要的特征,并将模型各零件贴合,通过布尔 运算将零件组合,由于需要在 A4-Modal 模块赋予材料, 铜管与其他零件不组合。之后进入 DM 中将各个实体 Form New Part,保证交界面能够共网格,数据顺利传递。

在绘制网格时,将网格 Sizing 设置为 1mm,其他 设置采用默认参数,得到探针网格图如图 4 所示。

根据探针在安装使用时的固定状态,对紧固面施加 固定约束,如图5所示。

设置相关边界条件(图6),开展有限元数值计算。

4.2 有限元数值计算方法振动校验结果

利用有限元数值计算方法对本次研究中的各型探针

进行振动校验,所得到的自振频率结果如表3所示。

采用有限元数值计算方法,在得到探针各阶自振频 率的同时,还可以获得其模态振型图(图7),为设计 人员判断其具体的振动情况提供参考。

图 3 处理后的探针模型图

图 4 探针网格图

图 5 紧固面

Ξ	Options			
	Max Modes to Find	30		
	Limit Search to Range	No		
Ξ	Solver Controls			
	Damped	No		
	Solver Type	Program Controlled		
Ξ	Rotordynamics Controls			
	Coriolis Effect	Off		
	Campbell Diagram	Off		
+	Output Controls			
+	Analysis Data Management			

图 6 边界条件设置示例

5 振动测频试验

为获得本次研究各项 探针的自振频率基准值, 对每支探针实物都进行了 静频测试试验。试验时, 用专用转接段将探针安装 在试验平台上, 使其模拟 在发动机上的实际安装状 态(紧固面一致、悬空及 自由部位也保持一致)。用 ICP 传感器做拾振元件。用 小钢棒轻敲试验件时,试 验件将在脉冲力的作用下 振动,此时 ICP 传感器拾 到的振动信号经电荷放大 器放大,送至频谱分析系 统进行 FFT 分析,得到频 谱图,读取谱图上各谱峰 的频率值,即得到探针在 测试频率范围内的频率值。

试验流程如图 8 所示。

振动测频试验的结果 如表4所示。

由于部分探针的高阶 振动频率值超出了本次测 频试验预设的频率范围上 限(10000Hz),因此没有 采集到相应的实测频率^[2]。

与模型不同,同个编 号的同一批次探针实物之 间,由于组装焊接手法、 零部件加工精度和堆料填 充等实际因素的影响会存 在一些差异, 这种差异对 探针的实际自振频率也存 在一定影响。为了能够更 准确地获得该型探针的静 频实测结果,对本次研究 中的各型探针都取了至少2 支实物试样进行试验,并 对测频结果取均值,去掉

了分散度较大的特殊情况, 从而确保试验结果具有一 定的准确性和代表性。

6 对比与分析

对比三种不同方法 的探针自振频率结果如 表5所示。不同方法的振 动校验计算结果相对误差 见图 8。

因缺少振动实测频率,

图 8 试验流程图

表 3 有限元数值计算方法振动校验结果

序 号	探针 编号	有限元 一阶 /Hz	有限元 二阶 /Hz	有限元 三阶 /Hz	有限元 四阶 /Hz	有限元 五阶 /Hz
1	T0001-0	463.3	1225.1	1902.7	3216.6	3471.8
2	T0002-0	182.57	1125.3	2973.2	3541.6	6045.8
3	T0003-0	636.25	3788.7	5021.4	9934	14161
4	T0004-0	469.91	1955.3	3440.4	4541.7	7121.9
5	T0005-0	655.27	1527.6	2326.7	2981.8	3259.4
6	T0006-0	524.16	1936.7	3973.3	6633	8639.3
7	T0007-0	147.14	617.95	1401.8	1683.5	2853.7
8	T0008-0	1078.8	2416.7	3099	4249.6	5189.8

表 4 振动测频试验的结果

序号	探针 编号	振动测频 一阶 /Hz	振动测频 二阶 /Hz	振动测频 三阶 /Hz	振动测频 四阶 /Hz	振动测频 五阶 /Hz
1	T0001-0	569	1274	1966.5	2992	3758
2	T0002-0	167	1032	2788	3319	4890
3	T0003-0	619	3608	4788	9403	-
4	T0004-0	567	2039	3742	4614.3	6805.8
5	T0005-0	845	1644	2325	3101	3655
6	T0006-0	617	1810	3723	_	-
7	T0007-0	160	602	1340	1773	2746
8	T0008-0	1285	2027	3052	4072	5216

表 5 不同方法振动校验计算结果对比

序	探针	标准公式计算方法的相对误差					
号	编号	一阶	二阶	三阶	四阶	五阶	
1	T0001-0	84.2%	55.7%	19.7%	3.2%	36.1%	
2	T0002-0	71.6%	71.2%	70.2%	51.0%	45.0%	
3	T0003-0	59.8%	56.8%	9.0%	9.4%	—	
4	T0004-0	92.1%	86.2%	79.0%	66.6%	62.5%	
5	T0005-0	73.6%	15.0%	68.2%	146.6%	246.5%	
6	T0006-0	74.7%	46.0%	26.5%	_	-	
7	T0007-0	84.4%	74.1%	67.5%	51.9%	48.6%	
8	T0008-0	78.7%	15.4%	57.2%	130.4%	197.9%	
序	你此位日	有限元计算方法的相对误差					
汿	恢复中国		有限兀讧	异力法的	怕刈误差		
序 号	探针编号	一阶	1100元11 二阶	「昇万法的 三阶	相刈误差 四阶	五阶	
序 号 1	探针编号 T0001-0	一阶 18.6%	有限元日 二阶 3.8%	算方法的 三阶 3.2%	相对误差 四阶 7.5%	五阶 7.6%	
序 号 1 2	探针编号 T0001-0 T0002-0	—阶 18.6% 9.3%	1月限プロロ 二阶 3.8% 9.0%	·异万法的 三阶 3.2% 6.6%	相对误差 四阶 7.5% 6.7%	五阶 7.6% 23.6%	
序 号 1 2 3	探针编号 T0001-0 T0002-0 T0003-0	一阶 18.6% 9.3% 2.8%	1月限プレロ 二阶 3.8% 9.0% 5.0%	与力法的 三阶 3.2% 6.6% 4.9%	相对误差 四阶 7.5% 6.7% 5.6%	五阶 7.6% 23.6% 一	
序 号 1 2 3 4	探针编号 T0001-0 T0002-0 T0003-0 T0004-0	一阶 18.6% 9.3% 2.8% 17.1%	二阶 三阶 3.8% 9.0% 5.0% 4.1%	算力法的 三阶 3.2% 6.6% 4.9% 8.1%	相対误差 四阶 7.5% 6.7% 5.6% 1.6%	五阶 7.6% 23.6% 一 4.6%	
序 号 1 2 3 4 5	探针编号 T0001-0 T0002-0 T0003-0 T0004-0 T0005-0	一阶 18.6% 9.3% 2.8% 17.1% 22.5%	日降7日日 二阶 3.8% 9.0% 5.0% 4.1% 7.1%	三 阶 3.2% 6.6% 4.9% 8.1% 0.1%	相対误差 四阶 7.5% 6.7% 5.6% 1.6% 3.8%	五阶 7.6% 23.6% - 4.6% 10.8%	
序 号 1 2 3 4 5 6	探针编号 T0001-0 T0002-0 T0003-0 T0004-0 T0005-0 T0006-0	一阶 18.6% 9.3% 2.8% 17.1% 22.5% 15.0%	■ 除りしば 二除 3.8% 9.0% 5.0% 4.1% 7.1% 7.0%	卓 万法的 三阶 3.2% 6.6% 4.9% 8.1% 0.1% 6.7%	相対误差 四阶 7.5% 6.7% 5.6% 1.6% 3.8% -	五阶 7.6% 23.6% - 4.6% 10.8% -	
序 号 1 2 3 4 5 6 7	探针编号 T0001-0 T0002-0 T0003-0 T0004-0 T0005-0 T0006-0	一阶 18.6% 9.3% 2.8% 17.1% 22.5% 15.0% 8.0%	■ PROFILE 二阶 3.8% 9.0% 5.0% 4.1% 7.1% 7.0% 2.6%	三 阶 3.2% 6.6% 4.9% 8.1% 0.1% 6.7% 4.6%	相対误差 四阶 7.5% 6.7% 5.6% 1.6% 3.8% - 5.0%	五阶 7.6% 23.6% - 4.6% 10.8% - 3.9%	

图 9 不同方法振动校验计算结果相对误差

有个别探针的高阶相对误差无法计算,但基本不影响整体的数据趋势^[3]。

从表 5 和图 8 可以看出,当采用标准公式计算方法 进行振动校验时,探针的各阶自振频率计算结果均与实 测值的偏差较大,相对误差超过 10% 的项占全体数据的 95%,基本无法采信,部分偏差甚至高达近 200%。当采 用有限元计算方法进行振动校验时,探针的各阶自振频率

参考文献:

[1] 尹泽勇.大力加强我国中小型航空发动机技术的发展 [R].北京:中国工程院.2002.

[2] 经留洋, 范秀杰, 刘套. 航空发动机叶片静频测试 技术研究 [J]. 科技创新与应用, 2017 (15):22.

[3] 刘鸿文. 材料力学 I: 第4版 [M]. 北京: 高等教育 出版社,1979.

计算结果与实测值较为接近,相对误差在10%以内的项占全体数据的80%以上,计算结果与试验实测值吻合性较好。

有限元数值计算方法进行振动 校验时,结果与试验实测值的误差 远低于采用标准公式计算的方法。

7 结语

本文基于振动测频试验实测结 果,对标准公式和有限元数值两种 计算方法的准确性进行了对比分析, 确定了数值模拟计算方法的有效性, 在后续的探针设计振动校验过程中, 应采用数值模拟计算的方法来获取 其自振频率。

从本次研究还可以看出,由于仍 然存在一定的模拟近似,因此数值模 拟的计算方法与实测结果也存在一定 的误差,且误差较大的部分主要集中 在计算第一阶自振频率时,计算第二 阶至第四阶频率时的精度明显提高, 说明本次研究中对于有限元数值计算 方法进行振动校验的设置和数据后处 理仍然存在一定的不足,有必要继续 展开相关研究,进一步改进模型设置 和网格绘制方法,优化边界条件,提 高采用有限元数值计算方法进行探针 振动校验的准确性。