基于 CFD 的液力变矩器叶栅设计及叶片参数敏感度 分析

李朴芬

(中国铁建高新装备股份有限公司 云南 昆明 650200)

摘要:本文结合某型号大型养路机械传动系统单涡轮液力变矩器叶栅设计,基于 CFD 仿真计算分别对各叶 片参数下液力变矩器内流场进行数值模拟,计算得到叶片不同参数变化后液力变矩器的性能。通过计算结 果分析叶片关键参数对液力变矩器性能的影响,进而得出叶片关键参数影响液力变矩器性能敏感度评价方 法,为液力变矩器的优化设计提供指导依据。

关键词:液力变矩器;叶栅设计;CFD;数值模拟;敏感度分析

0 引言

液力变矩器(以下简称变矩器)是大型养路机械传 动系统的核心部件,可根据负载的变化在一定范围内实 现转速与转矩的无级变化,提高车辆的通过能力,它的 性能好坏直接决定了整机的工作效率。

在设计过程中,往往采用调整各叶轮叶片参数的方 法来优化变矩器性能,使其达到目标要求。变矩器叶片 为复杂的空间曲面结构,叶片各参数的变化对变矩器性 能的影响都极为敏感。故研究叶片进出口角度、进出口 半径及叶片倾斜角度等关键参数对变矩器性能优化及设 计至关重要。

本文基于计算流体动力学(CFD)仿真计算,得 出各叶轮叶片关键参数对变矩器的失速变矩比 K₀,最 高效率 η_{max}和能容系数 λ_B的影响结果。进而得出叶 片关键参数影响变矩器性能敏感度评价方法,可用来 指导变矩器的优化设计,以缩短变矩器的研发周期和 研发成本。

1 变矩器叶栅设计流程

为研究各叶轮叶片不同参数变化对变矩器性能的影响,以某型号单涡轮变矩器叶栅设计为例,对变矩器叶 片参数敏感度进行分析,该型号单涡轮变矩器目标性能 参数如表1所示。

1.1 变矩器流道及网格模型建立

该变矩器为三元件离心式变矩器,设计时选取的循

环圆有效直径为380mm,泵轮叶片数为24,涡轮叶片 数为21,导轮叶片数为13。该变矩器循环圆及叶片图, 如图1所示。

表 1 变矩器目标参数

转速比 i	变矩比 K	效率 η	公称转矩 M _{bg} /Nm
0	2.68	0	230
0.1	2.48	0.248	245
0.2	2.27	0.454	243
0.4	1.83	0.732	237
0.6	1.396	0.838	220
0.8	0.995	0.796	162
0.9	0.995	0.896	115
0.973	0.995	0.968	29
1	0	0	5

图 1 某型号单涡轮变矩器循环圆和叶片

在进行 CFD 数值模拟过程中,可将变矩器内部流 道简化成一个封闭的空间进行计算。将图 1 所示的循环 圆与叶片导入三维建模软件 UG 中进行布尔操作,抽取 流道几何模型,将其构成的整体作为数值模拟的计算域。

将抽取出的各叶轮流道几何模型导入 ANSYS-ICEAM 中进行网格划分,由于网格质量对数值模拟稳定 性和精度有很大影响,因此选用高质量的六面体结构化 网格对其进行划分,并对无叶栅区域处的网格进行局部 加密处理。变矩器泵轮、涡轮以及导轮的全流道网格模型, 如图 2 所示。

图 2 叶轮全流道网格模型

1.2 变矩器 CFD 仿真计算

分别将生成的全流道网格模型导入 FLUENT 软件 中,应用滑移网格瞬态算法进行求解计算,如图 3 所示。 计算时将各叶轮流道进出口处的面设置为 Interface 面, 其余面网格设置为壁面(Wall)边界条件,设置泵轮输 入转速为 2000r/min,工作油液密度为 832kg/m³,动力 黏度为 0.0258Pa · s。

1.3 变矩器原始特性计算

基于 CFD 仿真计算(式 1),可获取各转速比下泵轮、 涡轮以及导轮的工作转矩,通过换算可得出变矩器关 键性能参数变矩比 K₀、最高效率 η_{max} 和能容系数 λ_B。

图 3 零速工况速度矢量云图

通过对比分析,可判定该变矩器性能是否达到设计范围, 若结果与目标偏差较大,可经过多次优化设计,直至仿 真结果达到目标要求。

$$\begin{cases} \lambda_B = \sum_{j=0}^n a_j \cdot i^j \\ K = \sum_{j=0}^n b_j \cdot i^j \\ \eta = K \cdot i \end{cases}$$
(1)

式中:i-传动比;

 λ_{B} - 变矩器能容; K—变矩比; η - 变矩器效率; a_{j} 、 b_{j} - 拟合函数系数。 变矩器从发动机端吸收的转矩为:

$$T_{\rm B} = \lambda_{\rm B} \rho g n_{\rm B}^2 D^5 \tag{2}$$

式中: T_B - 泵轮转矩 (Nm);

ρ -油液密度,取 $ρ = 833.2 \text{kg/m}^3$; g -重力加速度,取 $g = 9.8 \text{m/s}^2$; n_{B} -泵轮转速 (r/min); D -液力变矩器循环圆有效直径 (m)。 涡轮端输出的转矩为:

$$T_T = T_B \cdot K(i) \tag{3}$$

式中: T_T - 泵轮转矩 (Nm)。

设计过程中结合 CFD,对各叶轮叶片参数进行修正 调整,最终设计了 D380-1、D380-2、D380-3、D380-4 这四组不同性能的变矩器叶栅,如表 2 所示,其中 D380-2 号叶栅性能满足设计目标范围要求。

2 叶片参数敏感度分析

2.1 叶片关键参数

影响变矩器性能的叶片关键参数包含叶片进出口角

表 2 变矩器不同叶栅 CFD 仿真数据

叶栅型号	能容	变矩比	最高效率
	$M_{ m bg0}/ m Nm$	K _o	$\eta_{ m max}$
D380-1	258	2.22	≥ 0.85
D380-2	227.5	2.80	≥ 0.85
D380-3	203.2	2.85	≥ 0.85
D380-4	259.2	2.47	≥ 0.85

度、进出口半径、叶片数量等。各叶轮叶片关键参数, 如图 4 所示。

 β_{11} - 轮进口+住; β_{12} - 泉轮田口+住; β_{11} - ዓ轮八口用; β_{32} - 导轮出口角; R_{51} - 泵轮进口半径; R_{52} - 泵轮出口半径

2.2 叶片参数敏感度分析

结合上述某型号变矩器叶栅设计过程,保持涡轮、 导轮叶片参数不变前提下,通过改变泵轮叶片出口角 度,得到 P1、P2、P3 三种泵轮叶形,如图 5 所示。 采用 CFD 分别对其进行仿真计算,得出泵轮叶片出口 角度变化下变矩器性能指标,计算结果如表 3 所示, 分析得出泵轮出口角度对变矩器性能指标影响的敏 感度。

由表3计算结果可知,泵轮叶片出口角变化对 变矩器性能参数变矩器比K₀及能容M_{bg0}影响比较 敏感。

同理,保持泵轮、导轮叶片参数不变前提下,通 过改变涡轮叶片进、出口角度,得到不同的涡轮叶形, 如图 6 所示。采用 CFD 分别对其进行仿真计算,可得 出泵轮叶片进出口角度变化对变矩器性能指标影响的

图 5 不同出口角度的泵轮叶片结构图

表 3 不同泵轮叶片角度的变矩器性能

泵轮	能容	变矩比	最高效率
7770	M _{bg0} /Nm	K _o	$\eta_{ m max}$
P1 ($\beta_{\rm P1}=105^\circ$)	258	2.22	≥ 0.85
P2 ($\beta_{\rm P1}=115^\circ$)	227.5	2.80	≥ 0.85
P3 ($\beta_{\rm P1}=119^\circ$)	203.2	2.85	≥ 0.85

图 6 不同进出口角度的涡轮叶片结构图

工业设计

敏感度。

同理,保持泵轮、涡轮叶片参数不变前提下,通 过改变导轮叶片进、出口角度,得到不同的导轮叶形, 如图 7 所示。采用 CFD 分别对其进行仿真计算,可得 出导轮叶片进出口角度变化对变矩器性能指标影响的 敏感度。

同理,保持涡轮、导轮叶片参数不变前提下,通过 改变泵轮叶片倾斜度,如图 8 所示。采用 CFD 分别对 其进行仿真计算,可得出导泵轮叶片倾斜度变化对变矩 器性能指标影响的敏感度。

同理,保持涡轮、导轮叶片参数不变前提下,通过 改变泵轮叶片出口半径,如图9所示。采用CFD分别 对其进行仿真计算,可得出导泵轮叶片出口半径变化对 变矩器性能指标影响的敏感度。

综上,利用 CFD 分别计算上述各叶轮叶片不同参数变化下的流道模型,整理计算结果,总结归纳改变

图 7 不同进出口角度的涡轮叶片结构图

图 9 泵轮叶片出口半径变化

叶栅参数 对失速变矩 对最高效率 对能容系数 水 η max 敏感度 η max 敏感度 λ b 敏感度 泵轮出口角 β_{P2} +++ + +++ 泵轮入口角 β_{P1} +++ +++ +++ 涡轮出口角 β_{T2} +++ +++ +++ 涡轮入口角 β_{T1} +++ +++ +++ 涡轮入口角 β_{S2} +++ +++ +++ 导轮出口角 β_{S2} +++ +++ +++ 导轮出口角 β_{S1} +++ ++++ +++ 导轮出口角 β_{S1} ++ ++++ +++ 京轮叶片前倾 + + +++ 京轮叶片前倾 + + ++++		性能参数			
比 K_0 敏感度 η_{max} 敏感度 λ_B 敏感度 泵轮出口角 β_{P2} +++ + 泵轮入口角 β_{P1} +++ +++ 涡轮出口角 β_{T2} +++ ++ 涡轮出口角 β_{T2} +++ +++ 涡轮入口角 β_{T1} +++ +++ 涡轮入口角 β_{S1} +++ +++ 导轮出口角 β_{S2} +++ +++ 导轮入口角 β_{S1} +++ ++++ 导轮入口角 β_{S1} ++ ++++ 京轮叶片前倾 + + 東轮叶片点倾 + ++++	叶栅参数	对失速变矩	对最高效率	对能容系数	
		比 K ₀ 敏感度	η_{\max} 敏感度	$\lambda_{\rm B}$ 敏感度	
	泵轮出口角 β_{P2}	+++	+	+++	
涡轮出口角 β_{T2} ++ ++ ++ 涡轮入口角 β_{T1} +++ ++ +++ 导轮出口角 β_{S2} ++ +++ ++ 导轮入口角 β_{S1} ++ +++ ++ 导轮入口角 β_{S1} ++ +++ ++ 京轮叶片前倾 + + +++ 京轮叶片后倾 + + ++++	泵轮入口角 β_{P1}	++	+	++	
涡轮入口角 β_{T1} +++ ++ +++ 导轮出口角 β_{S2} ++ +++ ++ 导轮入口角 β_{S1} ++ +++ ++ 导轮入口角 β_{S1} ++ +++ ++ 豪轮叶片前倾 + + +++ 泵轮叶片后倾 + + +++	涡轮出口角 β_{T2}	++	++	++	
导轮出口角 β_{S2} ++ +++ ++ 导轮入口角 β_{S1} ++ +++ ++ 泵轮叶片前倾 + + +++ 泵轮叶片后倾 + + +++	涡轮入口角 β _{T1}	+++	++	+++	
导轮入口角 β _{S1} ++ +++ ++ 泵轮叶片前倾 + + +++ 泵轮叶片后倾 + + +++	导轮出口角 β_{S2}	++	+++	++	
泵轮叶片前倾 + + ++++ 泵轮叶片后倾 + + ++++	导轮入口角 β _{S1}	++	+++	++	
泵轮叶片后倾 + + ++++	泵轮叶片前倾	+	+	+++	
· · · · · · · · · · · · · · · · · · ·	泵轮叶片后倾	+	+	+++	
「増大泳牝山山丰住」 + ++ + +	增大泵轮出口半径	+	++	+	
减小泵轮出口半径 + + ++	减小泵轮出口半径	+	+	++	

表 4 关键参数对变矩器性能影响敏感度分析

各叶片各参数后液力变矩器性能指标的变化,如表4 所示。进而得出关键参数影响液力变矩器性能敏感度 评价方法。

需要说明的是,表中的"+"的个数表示该关键参数对液力变矩器的性能影响的程度,例如第一行数据,失速变矩比 K_0 和能容系数 λ_B 为3个"+",表示失速变矩比 K_0 和能容系数 λ_B 对泵轮的出口角 β_{B2} 的变化很敏感,最高效率 η_{max} 为1个"+",说明改变液力变矩器泵轮的出口角 β_{B2} 对其最高效率 η_{max} 的变化不敏感,其他的以此类推。

3 结语

基于叶片设计方法和 CFD 仿真平台, 计算得到不

同敏感度参数变化后变矩器的性能,总结归纳了叶片关 键参数对变矩器性能的影响敏感度。从表 4 可以得出, 失速变矩比 K_0 对泵轮的出口角和涡轮的入口角最为敏 感;最高效率 η_{max} 对导轮的进出口角最为敏感;泵轮的 出口角和涡轮的入口角、泵轮叶片前倾和泵轮叶片后倾 对液力变矩器的能容系数 λ_B 影响最大。变矩器关键参 数敏感度评价方法,可用来指导变矩器的优化设计,以 缩短变矩器的研发周期和研发成本。

参考文献:

[1] 马文星. 液力传动理论与设计 [M]. 北京: 化学工业 出版社,2004.

[2] 才委,马文星,刘春宝,等.基于三维流场计算的液力变矩器特性预测方法[J].哈尔滨工程大学学报,2007,28(03):316-319+325.

[3] 严鹏,吴光强.液力变矩器性能分析 [J]. 同济大学 学报(自然科学版),2004,32(11):1504-1507.

(上接第11页)

图 10 小型化电气柜

经过试验验证,柜体在经过连续振动试验后,柜体 结构无裂纹、无损伤,外观和机械结构未发生任何损坏, 试验结果满足标准要求。

6 结语

本文以一种既有动车组车载电气控制柜为原型,通 过采用继电器逻辑单元、输入输出模块、结构优化的方 式对原电气控制柜进行小型化及轻量化设计。相比原电 气柜,小型化电气柜体积减少了约50%,质量减少了约 26%,实现了电气柜的小型化及轻量化设计,同时小型 化电气柜具有数字化、集成化、智能化特点,为后续电 气柜小型化及轻量化的研究提供了可借鉴的思路。

课题项目:中国铁道科学研究院集团有限公司科研项目。课题名称:时速400公里动车组关键技术研究; 课题编号:2019YJ012。

参考文献:

[1] 秦娇梅,李振,盖萌.基于冗余设计的无触点逻 辑控制单元的研发[J].铁道车辆,2020,58(11):15-25.

[2] 王正斌. 简述地铁车辆 LCU 系统及应用 [J]. 科学大 众, 2020(11):166-167.

[3] 朱鹏举. 地铁车辆 LCU 出现的问题及解决方案 [J]. 电力机车与城轨车辆,2018,41(4):85-86.

[4] 彭驹,袁浩智,白春光.城轨列车双冗余LCU 系统集成技术研究及应用[J].电力机车与城轨车 辆,2019,42(5):21-24.

[5] 崔韬,贾继云.标准地铁列车电气柜布置策略及走线方案研究[J].电力机车与城轨车辆,2021,44(5):101-104.

[6] 麦金森,夕文.铁路机车车辆运行故障监测诊断技术的研究与应用[J].中国铁路,2007(03):56-59.

作者简介:秦飞龙(1986.02-),男,汉族,吉林吉林人, 硕士研究生,工程师,研究方向:机车车辆电气柜设计及 研发;王海琦(1995.08-),女,汉族,河北沧州人,硕 士研究生,研究实习员,研究方向:机车车辆列车网络与 电气控制研发。

通讯作者:夏好广(1987.08-),男,汉族,山东德州人, 博士研究生,副研究员,研究方向:机车车辆列车网络 与电气控制研发。