防溢出检测方法在食品制作机中的设计与应用

方桦

(广东瑞德智能科技股份有限公司 广东 佛山 528000)

摘要:针对目前食品制作机防溢探针实用性低和制作成本高等问题,本文通过研究多款食品材料在平原与高原地区的溢出实验,按照温度采样值的动态变化来确定食品沸腾情况,再通过调节自动搅拌周期和自动加热功率,实现防溢出目的,完成食品制作机设计和相关防溢出检测方法的探究。该食品制作机实用性好,且制作成本低,适应性广,食材特性和环境因素干扰性低。

关键词: 防溢; 食品制作机; 检测方法

0 引言

目前,同类技术的机器均通过防溢探针来进行沸腾 检测,达到防溢目的。食品制作机开始运作时,杯内食 品与探针不接触,无法形成回路,但当混合物或者水位 沸腾上升,接触防溢探针后即形成回路,信号传递至单 片机处理模块中,通过反馈信号即可分辨出接近溢出或 沸腾的状态。

但食品制作机内的食品也会在制作过程中产生泡沫、析出杂质,这些物质在接触到探针后,信号还是会产生,导致信号不稳或误判溢出状态。防溢探针又极易被豆类食品煮沸后产生的泡沫包住,导致灵敏度降低或者防溢功能失效。另外,食品在不同环境中,沸点不同,最明显的就是海拔高度差异,环境的改变对溢出检测产生了很大影响,降低了适用范围。而在食品制作机内包含检测探针也会加大机器制作成本。

面对现有的技术痛点,本文对防溢出检测方法在食品制作机中的设计与应用进行了探究。本文所述的无探针防溢测试,通过温度采样值的动态变化情况,从而确定食品是否沸腾,再调整机器设定实现料理防溢出的目的,降低机器制作成本,方便推广使用。

1 食品制作机的防溢出检测方法

1.1 防溢出检测方法设计

- (1) 得出温度采样值:温度采样值可以通过食品制作机杯内包含的温度传感器得出,转换成动态数据反馈确定信号。
- (2) 对比确定: 对比杯内的温度,确定是否大于第一温度阈值 TEMP1, TEMP1 一般设为 87℃。
- (3) 预设搅拌周期和加热功率: 食品制作机杯内包含搅拌组件与电机, 杯内温度采集后, 对比判断为不超过 TEMP1, 则控制食品制作机遵循预设自动搅拌周期

和自动加热功率完成工作。

预设功率为食品制作机全力运行功率,搅拌周期则为每隔 1min 完成一次搅拌。搅拌工作方式为循环运行模式,即电机"工作 2s,停 3s"。

(4) 防止溢出: 机器动态采集温度采样值,利用其数值预设对比来确定食品沸腾情况。若采集温度不低于TEMP1,则自动调节食品制作机的自动搅拌周期和自动加热功率,以防止溢出。

1.2 搅拌周期和加热功率调整

- (1) 确定最高和最低温度采样值:每次搅拌时均利用温度传感器,动态得出多个温度采样值,从而完成最高温度采样值 ADG 和最低温度采样值 ADD 的数据采集。
- (2) 计算温度差值: 所测得的 ADG 减去 ADD 就是温度最大差值 ADC,即 ADG-ADD=ADC。
- (3)调整自动搅拌周期和自动加热功率:按照 ADC 控制食品制作机运作程序。其中, ADC 和自动加热功率为正比关系。按照下表对应关系进行相应的食品制作机调整。

表 ADC 与加热功率及搅拌周期之间的对应调整关系

温度采样值之间 的差值 ADC	自动加热 功率调整	自动搅拌周期调整
ADC > 3	最大加热功率	每隔 1min 搅拌一次
2 < ADC ≤ 3	降低至 600W	加速至 50s 搅拌一次
1 < ADC ≤ 2	降低至 400W	加速至 25s 搅拌一次
ADC ≤ 1	降低至 200W	加速至 20s 搅拌一次

1.3 沸腾确定方法

按照温度变化趋势确定食品沸腾情况,从而完成沸腾确定,其流程与依据如图 1 所示。

1.3.1 按照第一预设时间内温度采样值的波动幅度确定 监控并测算出第一预设时间 t₁ 内温度采样值的波动

幅度。当 t, 限时内温度波动幅度低于预设幅度阈值时,

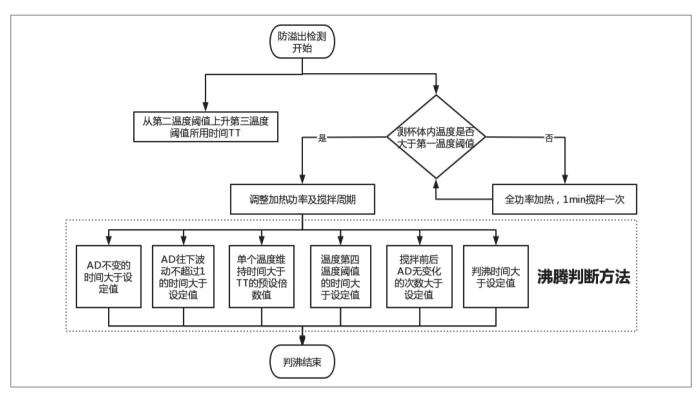


图 1 防溢出检测流程图

可确定食品沸腾。

预设幅度阈值 ADT 可以包含温度采样值 AD,即 ADT=AD, t_1 需要按照食品温度情况动态进行小幅度转变的时间进行标定。

此时,食品温度情况即温度采样值波动幅度,指 ADD 与 ADG 之间 的 差值 ADC,即 当 ADC-ADT < ADT=AD 的持续时间超过 t_1 时,可确定食品沸腾。

1.3.2 按照第二预设时间确定

当食品沸腾时,温度采样值会基本不变,因此,在第二预设时间 t_2 内温度采样值若变化不明显,也可确定食品沸腾。其中, t_2 是以食品温度变化幅度维持不变的情况标定的。

1.3.3 按照杯内温度点的维持时间确定

- (1) 按照杯内的温度确定多个待测温度点。以六个温度点的记录为例: 若采集的温度达到 88 \mathbb{C} , 记录 88 \mathbb{C} 、89 \mathbb{C} 、90 \mathbb{C} 、91 \mathbb{C} 、92 \mathbb{C} 和 93 \mathbb{C} 。若采集的温度升到 89 \mathbb{C} ,则记录转变为 89 \mathbb{C} 、90 \mathbb{C} 、91 \mathbb{C} 、92 \mathbb{C} 、93 \mathbb{C} 和 94 \mathbb{C} ,以此类推。
- (2) 多个待测温度点中,需要记录每一个的维持时间。按照此前确定的六个温度点,依次记录维持对应温度所持续的时间: T1、T2、T3、T4、T5 和 T6,即维持在89°C的时间为T1,维持在90°C的时间为T2,以此类推。
- (3) 从第二温度阈值 TEMP2 上升到第三温度阈值 TEMP3 的用时记为 TT, 其预设倍数值为 k, 当 k 低于 T1、T2、T3、T4、T5 或 T6 时,可确定食品沸腾。其中, TEMP3 < TEMP1, 0 < k < 1。

1.3.4 按照杯内的温度变化确定

当食品沸腾时,会慢慢减少温度的动态变化。可见,预设阈值连续大于N个差值时,可认为已减少温度动态变化,可确定食品沸腾。具体判断如下:

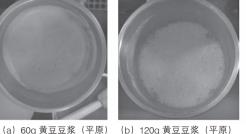
- (1) 每次搅拌时,均收集获得多个温度采样值,使用温度传感器确定 ADD 和 ADG。
 - (2) 算出差值 ADC, 即 ADC=ADG-ADD。
- (3) 预设阈值连续大于N个差值时,确定食品沸腾,其中,N是整数且不小于1。可在不同的料理环境和应用场景中,按照食品在食品沸腾时的温度变化大小完成预设阈值的对应标定。

1.3.5 按照杯内的温度确定

当食品温度在持续第三预设时间 t_3 内,大于第四温度阈值 TEMP4(即环境温度沸点),可确定食品沸腾。

当杯内的温度大于 TEMP4 且时间持续至 t_3 时,确定食品沸腾。其中,TEMP4 > TEMP1,TEMP4 需要按照不同环境的液态食品沸点进行测定。在平原环境里面,食品沸腾时温度大于 98 $\mathbb C$,此时 TEMP4 标定为 98 $\mathbb C$ 。此外,食品完全沸腾后,标定温度变化幅度几乎没有的时间为 t_3 。

1.3.6 按照食品制作机运行时间确定


- (1) 测出运行时间: 当机器启动时,设备中的定时器就会开启,进行计时。
- (2) 机器运行时间超过第四预设时间 t_4 后,可确定 食品沸腾。
 - (3) t₄ 可按照食品在食品制作机中到达沸点的时间

完成标定。

2 食品制作机的设计

食品制作机的设计如图 2 所示, 其内含存储器、处理器及防溢出检 测程序。其中, 防溢出检测程序在 存储器中存储, 在处理器上运行, 实现防溢出检测。处理器按照图1 流程运行时,按照温度变化调整自 动搅拌周期和自动加热功率, 并按

(c) 120a 米糊 (高原)

(d) 40g 花生 +50g 大米 (高原)

图 3 方法验证与食品制作机测试结果(部分)

照动态采集的数据确定食品沸腾程度,有效完成防溢出 检测。

2.1 温度传感系统设计

本文所设计的食品制作机温度传感系统是按照变化 阻值测温的 (NTC), 是由电阻与 NTC 分压后的电压值 通过数字转换器模块(ADC模块)进行模数转换得出 的。软件内处理 AD 转换每 20ms 进入一次 ADC 模块程 序入口地址,进入需配置 AD 通道并等待 AD 转换结果, 再对取到的 AD 值完成平均处理,得出相对平滑 AD 值, 最后按照平均 AD 值查询温度表转换为温度值,温度值 与 AD 值可通过 NTC 真值表转化。

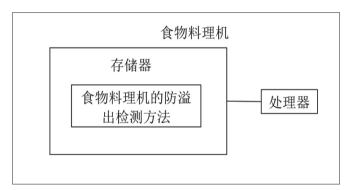


图 2 食品制作机设计示意图

2.2 方法验证与食品制作机测试

选取外形完整、大小均匀、饱满有光泽的谷物原材 料和新鲜排骨,制作出豆浆、米糊、玉米汁、排骨浓汤 和八宝粥等粘稠度和沸腾情况均不一样的食材, 于平原 地区和高原地区(海拔大于 1km 的云贵高原),分别按 照不同电功率(800W、1000W及1200W)和水位(680mL、 800mL、1000mL、1200mL、1400mL) 进行正交实验, 试验条件包含如表 2 所示。记录沸腾情况与沸腾温度, 以验证食品制作机运行情况与上述方法设计合理度。试 验现象均为"无溢出",结果如图 3 所示。

3 结语

本文所设的检测方法先利用温度传感程序采集动 态温度采样值,然后按照采样值确定机器内部沸腾情 况,调整控制机器运行情况。若杯内采集的实际温度 小于或接近 TEMP1,则控制食品制作机按照预设值完 成自动升温加热和搅拌, 若此时杯内采集的实际温度 超过预设 TEMP1,则按照 ADC 情况,运行预设程序, 调整杯内自动搅拌周期和自动加热功率,达到止沸 目的。

由此为理论基础,设计食品制作机完成温度采样值 数据的采集,再按照数值变化的趋势确定食品沸腾状 态, 预设程序进行功率和动搅拌周期调整, 完成防溢 出检测,避免沸腾溢出现象。

食品制作机经过验证,确定了平原沸腾终点最高 为98℃,高原沸腾终点最高为95℃,即确定了平原 和高原两大地区的 TEMP4, 从而确定沸腾确定方法。 如图 3 所示, 验证实验中所测试食材即便剧烈沸腾, 覆盖其上的杯盖和隔网上也不沾或仅沾少量泡沫杂 质,确定为无溢出现象,进而确定本文设计的防溢出 检测方法与沸腾确定方法实用可信,食品制作机设计 合理。

参考文献:

- [1] 魏春英,秦飞舟.基于单片机的家用料理机的设计 [J]. 数码设计(下),2017,6(03):197-199+201.
- [2] 俞磊,张雨婷,熊倩倩,等.基于STC89C52 单片机 的智能家用料理机的设计与实现[J]. 佳木斯大学学报 (自然科学版),2019,37(02):202-205+210.
- [3] 张毅刚, 彭喜元, 彭宇. 单片机原理及应用 [M]. 北 京:高等教育出版社,2010.
- [4] 重庆渝金源食品有限公司. 防溢出豆浆制作装置: CN201611083265.8[P].2017-04-26.
- [5] 乔维君. 破壁机的故障自动诊断与保护系统的设计 与实现 [D]. 成都: 电子科技大学,2020.
- [6] 广东瑞德智能科技股份有限公司. 食物料理机及其 防溢出检测方法: CN201810936259. 5[P]. 2021-09-21.

作者简介: 方桦(1981.11-), 男, 汉族, 广东佛山人, 本科,工程师,研究方向:智能家电。