U型管换热器盲穿的制造工艺研究

任凯 张朋 王文山 (山西丰喜化工设备有限公司 山西 永济 044500)

摘要: U 型管换热器是应用广泛的一种热交换器, 其广泛应用于化工、石油、医药、食品、轻工、冶金、焦化等领域中的热交换对流传热, 以及蒸汽冷凝和液体蒸发传热等换热冷凝流程。U 型管换热器盲穿一直以来是换热器制造的难点, 本文重点讨论了 U 型管换热器盲穿的控制点, 结合实际情况, 总结出一系列的应对策略, 希望能够为业内人士提供参考与借鉴。

关键词: U型管换热器; 盲穿; 应对策略

0 引言

当前由于工业技术的持续升级,我国煤化工装备质量得到全面提升,不过和煤化工石油化工行业的实际发展相比,还存在明显的落差。目前煤化工行业的前景仍然十分广阔,煤化工企业整体发展仍然十分激烈。在这样的背景之业来说,未来的市场竞争仍然十分激烈。在这样的背景之下,对于煤化工石油化工企业制作设备的要求也日益增高,作为化工系统中的高压换热器更是如此。U型管换热器以其优秀的稳定性在所有换热器中一直有较高的比重。随着换热器逐渐朝着高温差、高压差、大型化的方向发展,U型管换热器传统的套筒制作方法不能满足某些设计需求,需要一种更为可行的制作方法来保证U型管换热器的运行质量。

1 U型管换热器盲穿的必要性

大型的 U 型管换热器的常规制造流程为:管板、折

流板、拉杆等组成管架→调整管架→将换热管穿入管 架→焊接管板和换热管→胀接→检测→将管束套入壳 程筒体→管板与壳程筒体连接。这种施工程序在直径 大或者管束长的情况下,由于管束的挠性和自重较重, 加上壳程筒体与折流板间隙较小,使套管束的工序变得 非常困难,极易损伤管束或者直接造成换热管的损伤, 使设备寿命降低。

壳程筒体介质有腐蚀性,壳程筒体材料为复合板或者堆焊不锈钢,加之管壳程温差大,必须采用壳程筒体和管板的焊接结构。如采用传统的套筒工艺,壳程筒体和管板的焊缝就成为合拢缝,这个合拢缝在运行工况中受力非常复杂,且缺乏有效的检测手段(不能采用 RT 检测),导致容易出现裂纹,使设备失效。具体结构详见图 1。

基于以上两种情况,换热管的盲穿就很好地解决了 这种问题。盲穿制造工艺是先将壳程筒体与管板连接, 在筒体内部组成管架,然后盲穿换热管,最后合拢带

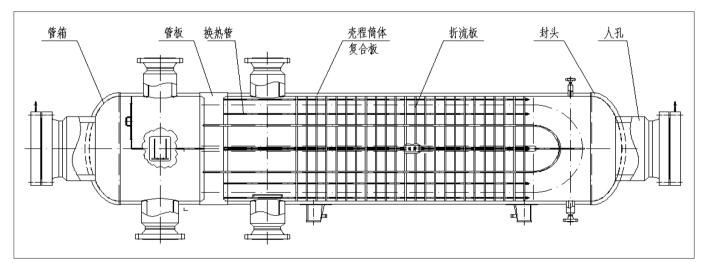


图 1 换热管盲穿结构示意图

- 16 -

人孔的封头,这样不仅不会损伤换热管,而且能保证 所有的焊接接头进行 100% 检测,有利于设备的稳定运 行。采用这种制造工艺会对各工序提出更高的要求,本 文将对出现的难点——提出应对策略,为业内人士提 供参考。本文提出的应对策略也可适用于列管式换热 管盲穿。

2 制造的难点分析

- (1) 由于是盲穿换热管,施工人员无法在管束旁边调整换热管的穿管。
- (2) 对换热器零部件的加工制作提出更高要求,如管板和折流板管孔达不到要求或者 U 型管弯制半径不合适,都会给换热管穿装带来很大麻烦。
- (3) 筒体内组装管架也是一个关键点和难点,如折流板不能采用合适的方法组架,也将影响换热管穿装。
- (4) 换热管穿装顺利的引导头和出现穿装问题的解 决也是一个难点。
- (5)U 型管束的尾部支撑也要采用一个合理的结构,保证设备的运行达到设计意图。以下将对这些难点——进行分析与解决。

3 零部件的加工制作

3.1 管板

管板尽量采用数控钻进行钻孔,钻定位孔时,必须 认真核对图纸的所有尺寸与电脑输入尺寸相同,并在 钻出定位孔后进行尺寸复核,确认无误后再继续进行, 采用数控钻可分别进行管板折流板的钻孔。如采用手 工钻时,将管板放在钻床工作台垫块上找平,一般采 用管板点焊一块折流板或支持板一同配钻。

钻孔后必须增加"铰"这个工序,因一般情况下管板较厚,普通钻孔难以保证管孔的粗糙度。铰孔是为了保证管板孔准确的达到图纸尺寸要求,并且达到规定的表面粗糙度。

如管板为碳钢材质,在穿管前,用加长杆不锈钢钢 丝刷对管孔内部进行除锈。

3.2 折流板

圆形折流板采用整圆下料,弓形折流板尽量也采用整圆下料。若折流板直径较大,为提高材料利用率,弓形折流板可采用弓形下料,缺口处留出 1.5 倍管孔间距加工量。钻孔时,将同一台产品的折流板或支持板叠压(缺口方向一致)沿周边分组点焊在一起,叠压高度应小于钻头长度的 4/5。折流板点焊必须压紧严实,端面与平面垂直,不垂直度不得大于 3mm,各折流板端部

间隙≤ 0.2mm,各处总厚度差≤ 2mm。钻孔孔径尽量按设计允许的偏差较大值。

折流板钻孔后,按折流板的安装顺序排好并标记,叠 放在一起,然后用相同直径的换热管短节进行试插,需保 证每个管孔均能顺利插入,防止有些管孔加工偏差,导致 换热管穿不进去,给后期的盲穿带来很大的麻烦。

3.3 U 型管弯制

- (1) U 型管弯制尽量采用弯管机进行弯制,弯曲半径实现一管一模。
- (2) 弯管的弯曲速度为弯管机最大弯曲速度的 20%~40%为官。
- (3) 根据大量弯管经验, 弯管回弹量数据为碳钢管子, R120以下回弹量1%, R120~R140回弹量1.5%, R140~R160回弹量2%, R160~R300回弹量2.5%, R300~R600回弹量3%。不锈钢管子, R120以下回弹量2%, R120~R140回弹量3%, R140~R160回弹量4%, R160~R300回弹量5%, R300~R600回弹量6%。以上数据为某公司弯管机弯制回弹量数据, 仅供参考。
- (4) 因为过大的圆弧不但使自动弯管工装的成型轮笨重,而且受弯管机机床尺寸的限制,曲线弯设计造型不合理,更大尺寸的弯管采用人工弯制。用内弯板条+滚轮+夹板+压板+定位销+手把管弯制。弯制过程中必须确保压板螺栓不得松动,管子与内弯板条及滚轮之间处于相对滚动状态,以保证换热管成形出的圆度及表面质量要求。
- (5) 每组规格 U 换热管的首件成形后必须进行自 检和专检,合格后方可进行第二根换热管的成形。U 形 管制作过程中上根换热管成形后应进行自检,合格后方 可进行下一根换热管的成形,且按一定比例进行抽检。

4 简体内组装管架

- (1) 筒体椭圆度的控制: 单个筒节校圆时严格控制 最大内径与最小内径之差 e,不得大于折流板与筒体的设计间隙。
- (2) 筒体直线度的控制:每组装几节筒节(5~6m)成一小段后,就需要测量筒体直线度,根据具体情况对直线度及时进行调整,而且直线度在焊接前和焊接后都各检查一次;最终组焊成筒体时,点焊后,用水平仪检查各小段上的方位母线,保证其在同一水平面内,最大平面度偏差≤2mm。测量直线度应至少在三个方位母线上进行,并尽量将直线度调整到较小值。
- (3) 管板与筒体轴线垂直度的控制: 焊接前找正固定, 要求垂直度控制在 1mm 以内。

- (4) 将拉杆、定距管、支持板、折流板等依次安装管架上,安装前应根据标记逐块检查折流板或支持板正反面、配钻方位以及折流板与管板,折流板之间的平行度。螺纹拉杆与管板连接端应连接牢靠,自由端螺母应旋紧。
- (5) 折流板的装配。大型筒体内组装管束时,折流板在筒体内的搬运组对无法借助行车和叉车,靠人工搬运费时费力,难度较大,下面提供了一种液压小车推送的方法进行安装,详见图 2。

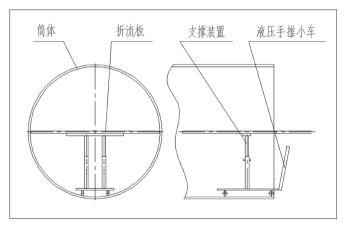


图 2 折流板装配小车示意图

在液压手推小车上方加装折流板支撑固定装置,支撑装置采用两根钻孔角钢,可根据筒体直径对高低进行大范围的调整,然后将折流板水平放置在支撑固定装置上(保证折流板重心在支撑正上方)并进行固定,起吊折流板与小车联合体,放入筒体内,通过小车液压装置微调折流板高度,使折流板顺利运送至指定位置,松开固定装置安装折流板。

5 换热管穿装

由于制造加工的偏差影响,会使管板管孔中心线与折流板管孔中心线不能完全重合,导致换热管穿管时管头会不时碰撞折流板与管板,而且由于盲穿,看不见内部的穿管情况,此处必须采用换热管穿管导头,用于穿管时的引导。而且不能用普通的导头,因为导头在穿管时如果不慎掉落,将无法从管束内取出。下面提供一种简易的换热管导头,制作简单实用性强,详见图3。

导头本体采用圆钢加工,前端加工成圆锥形状,后端加工至比换热管内径小一些,最后面用 ϕ 2 ~ ϕ 3 钢 丝弯制成 S 型,使用时,将导头塞入换热管内,S 型的钢丝在图示位置与换热管内壁产生摩擦力,依靠钢丝的弹性变形,使盲穿换热管时导头不脱落。

当发现有卡住、偏斜现场时,不得强行穿入,应取

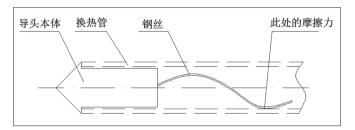


图 3 换热管防脱落导头

出管子, 放大样矫正后, 再行穿入。

6 U型管尾部支撑结构

U型管束尾部由于流体冲击而产生振动和膨胀,不 仅运行时产生较大噪声,且严重时会造成管束破坏,使 设备失效,所以尾部必须采用一种支撑结构,不但使换 热管隔离开,增加换热效果,而且可以将尾部 U 型弯 部分的管束连接成一整体,不产生振动。传统的尾部 支撑结构采用支撑板,将所有换热管弯管部分用扁钢 连接固定在一起,然后将扁钢和管束点焊成一个整体。 如果采用盲穿的方法,在筒体内部焊接这种支撑结构 由于空间所限,制造难度大,以下提供一种新型的尾 部支撑结构,详见图 4。

本结构用两组圆钢,分为A型缠绕支撑和B型缠绕支撑,如图4所示,分别在尾部的两侧。支撑结构从内往外,再相邻两排U型管弯管段之间,分别并排缠绕A型和B型支撑,穿一层换热管缠一次支撑,A型支撑从上往下开始(A-A剖视图所示),B型支撑从下往上开始。圆钢支撑不用提前预制,直接在穿管过程中挤压自动成型。在全部成型后,开始端和结束端缠绕扭紧即可。制造过程非常简单,不但不用焊接,还能保证管束尾部的固定。

7 合拢缝的焊接和检测

管東全部穿装完成,然后就可以进行换热管和管板的管头焊接,按照常规的焊接工艺焊接即可,在此不再赘述。焊接完成后,就可以进行筒体和尾部封头合拢缝的焊接,此处焊接因为后面有人孔,可以保证100%RT 检测。因为管束在筒体内搭设管架前将所有的A类、B类焊接接头100% 检测完毕,再加上此处合拢缝的100% 检测,可实现焊接接头检测全覆盖,极大地提高了设备的稳定性和安全性。

8 结语

本文讲述了 U 型管换热器盲穿的制造工艺以及制造过程中出现的难点要点,并且一一给出了相应的解决

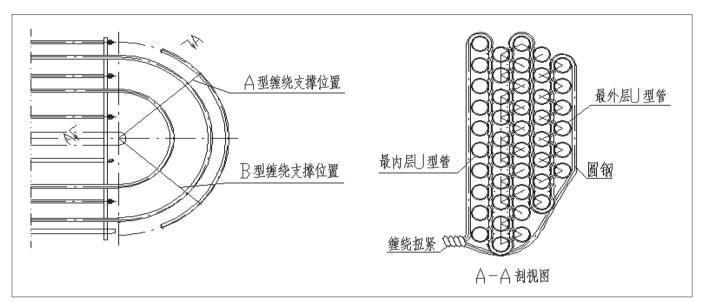


图 4 管束尾部支撑结构

方法。按照本文的描述进行 U 型管换热管的盲穿工作,制造完成后满足国家各项标准,保证了设备的稳定性,提高了设备的使用寿命,符合客户心里预期。这种制造方法不仅可适用于 U 型管盲穿,也可适用于列管换热器盲穿,优秀的制造工艺可提高制造厂的整体制造水平,本文描述的制造工艺可为相关设备制造企业提供一定的参考,也可为相关设计单位提供更广阔的设

计思路。

参考文献:

[1] 李顶付,陈欣,刘国忠.一种U型管换热器质量控制要点[J].石油和化工装备,2021(8):72-74.

[2]GB/T 151-2014, 热交换器 [S].

[3]HG/T 20584-2020, 钢制化工容器制造技术规范[S].

广告征订

版位 Format	价格 Price(RMB)	
特殊版位 Specified Ads. Position		
封面	25,000	
封二	16,000	
封三	12,000	
封底	18,000	
扉一	15,000	
扉二	10,000	
后扉一	12,000	
后扉二	9,000	

版位 Format	价格 Price(RMB)	
正常版位 Editorial Page		
编辑页	10,000	
编辑页跨页	15,000	
1/2编辑页	5,000	
1/3编辑页	3,500	
1/4编辑页	2,500	

注:所有特殊版位广告均为4C广告,正常版位广告均为黑白色;所有广告需提供成熟设计稿,如需编辑部制作需单独收费。

优惠说明:

在原价格基础上,连续预定3期,优惠**8%**;连续预定6期,优惠**15%**;连续预定12期,优惠**20%**;连续预定18期,优惠**30%**;连续预定36期,优惠**40%**。另,如提前一次性付款,可在享受优惠的基础上享受**8%**的额外折扣。

广告预定热线: 010-6741 0664 / 1368 332 6370