某乘用车排气消声系统模态试验及仿真研究

李霖

(东莞职业技术学院 广东 东莞 523808)

摘要:乘用车排气消声系统的模态特征提取对整车 NVH 性能优化具有重要意义。本文采用脉冲激励法测 试了某乘用车排气消声系统的模态特征,同时在 ANSYS workbench 平台上进行计算模态分析及验证。结果 表明两种模态特征的提取结果符合度较高,从而验证了试验模态分析、计算模态分析方法的准确性。该研 究对汽车排气系统的结构优化设计提供了良好的试验依据,具有重要的参考价值。

关键词:脉冲激励法;试验模态分析;计算模态分析

0 引言

模态测试及仿真分析可用于评价结构的动态特性、 控制结构的辐射噪声,辅助进行结构动力学修改等,因 此广泛用于各大工程领域。工程中常用的模态分析方法 包括试验模态分析以及计算模态分析两种,两种方法 可以相辅相成。在模态求解前期,计算模态分析可辅 助确定试验模态的测点分布、参考点位置;在模态求解 后期,试验模态的分析结果可用于校准计算分析模型, 提升计算模型的准确性。

采用脉冲效应法测试某乘用车排气消声系统的自由 模态及约束模态,在 ANSYS workbench 平台上进行计 算模态分析及验证,并通过相关研究对识别系统模态参 数为结构系统的振动特性分析、振动故障诊断和预报, 能够为优化设计结构动力特性提供参考,对指导汽车 排气消声系统设计优化具有良好的参考意义。

1 模态试验原理及方案

理论上连续体有无限多阶固有频率,而实际工程应 用中,低阶固有频率、特定频段内的固有频率才真正 受到关注。以汽车排气消声系统为例,其低阶固有频 率容易被外界激励,因此设计时须予以考虑;同时,怠 速工况对整车舒适性体验影响较大,因此需要确保消 声器共振频率避开怠速工况对应的激振频率。

本试验模态分析方案包括线性假设、时不变性假 设、可观测性假设、互异性假设。排气消声系统中关 于输入-输出的频响函数可用模态参数表示为:

$$h_{ij}(j\omega) = \sum_{k=1}^{m} \left(\frac{q_k u_{ik} u_{jk}}{j\omega - p_k} + \frac{q_k u_{ik} u_{jk}}{j\omega - p_k^*} \right)$$
(1)

系统中的所有模态均可以通过频响函数矩阵中的某行 或某列的测出被识别。在实际测试中采用以单输入多输出 测量技术 (SIMO),即通过固定力锤激励点、多点拾振的 方式采集数据。

激励系统选用带有压电式力传感器的力锤(型号LMS 086C03),分析系统包括:LMS SCANDAS MOBILE SCM05 便携式采集前端,Impact Testing 模块,POLYMAX 模块以及 TIME-MDOF 模块。测试对象为某汽车排气消声系统(包括催化器、主/副消声器等),如图1所示。测试件总长约 3500mm,为辅助测试,设计了动态特性试验 悬挂支架。

2 试验步骤

(1)安装消声器。测试自由模态时,消声系统用软橡 皮绳悬挂,测试约束模态时,消声系统用橡胶吊耳悬挂且 进气端口用螺钉固定在支架上,如图2所示。

(2)选取并标记响应测试点、激励点。传感器安装应 尽可能远离模态节点,激振点须避开结构薄弱环节等位置。

(3)建立模态测试模型。将Test.Lab前端与计算机相连, 并在前端接口连接上传感器和力锤,设置前端通道,使其 与力锤、传感器连接一致,校准测量系统。

(4) 采集数据。通过采用频率、量程设置、采样时长的采集获得合理参数;使用 Impact Testing 模块进行数据采 集并处理。

(5)识别模态参数,并进行质量验证。使用相关模块进行模态数据识别,提取出模态频率、阻尼率及振型信息;利用模态置信因子、判定准则数学工具验证模型质量。

3 试验模态特征提取

对沿车身方向布置的18个测点进行加速度数据采

图 1 排气消声系统加速度传感器布点

图 2 消声器安装示意图

集,得到的稳态图如图 3、图 4 所示。稳态图中模型假 定极点数用纵坐标表示,频率轴用横坐标表示,系统极 点用 o、v、s、f、d 表示,其中:o代表频率不稳定,v 代表频率和模态参预因子稳定,f代表频率稳定,d代 表阻尼和频率稳定,s代表所有参数全部稳定。

在 0 ~ 256Hz 范围内,自由状态、约束状态下该 排气消声系统分别有 9 阶、11 阶模态,对应的前 9 阶 的自由模态和约束模态频率及阻尼率如表 1 所示。使 用 Test.Lab 模块求出各阶模态向量的 MAC 值,如表 2 所示。该表的主对角线数值均为 100%,非对角元素均 小于 10%,说明选择的模态向量的正交性很好,所选 模态合适。

4 计算模态分析

描述系统特征的运动方程组可以用如下矩阵形式表示,即:

$$[M]\{\ddot{x}(t)\} + [C]\{\dot{x}(t)\} + [K]\{x(t)\} = \{f(t)\}$$
(2)

式中:[M]一质量矩阵;

[C]一阻尼矩阵;

[K]一刚度矩阵。

计算模态根据结构的几何形状、材料属性、边界条

图 3 自由模态稳态图

图 4 约束模态稳态图

表 1 模态频率阶次及阻尼率表

阶次	自由	模态	约束模态		
	频率 /Hz	模态阻尼率 /%	频率 /Hz	模态阻尼率 /%	
1	17.58	0.89	13.686	1.11	
2	21.47	1.45	16.03	2.25	
3	41.58	1.27	21.029	1.55	
4	53.85	0.63	27.15	2.57	
5	89.23	1.04	45.257	0.38	
6	109.8	3.05	57.012	3.35	
7	116.0	0.64	85.817	0.34	
8	159.8	4.18	104.21	1.17	
9	175.8	3.04	156.473	1.15	

表 2 自由模态 MAC(%) 表

阶次	频率 /Hz	(1) 17.58	(2) 21.47	(3) 41.58	(4) 53.85	(5) 89.23	(6) 109.8	(7) 116.0	(8) 159.8	(9) 175.8
(1)	17.58	100	0.18	0.03	1.07	1.44	1.31	1.23	1.21	0.08
(2)	21.47	0.18	100	0.38	6.45	0.02	0.38	1.53	2.01	0.04
(3)	41.58	0.03	0.38	100	5.74	7.38	0.09	2.58	0.92	2.47
(4)	53.85	1.07	6.45	5.74	100	2.58	3.56	0.60	7.44	0.27
(5)	89.23	1.44	0.02	7.38	2.58	100	10.27	5.01	2.86	0.26
(6)	109.8	1.31	0.38	0.09	3.56	10.27	100	3.86	4.84	0.44
(7)	116.0	1.23	1.53	2.58	0.60	5.01	3.86	100	7.47	0.21
(8)	159.8	1.21	2.01	0.92	7.44	2.86	4.84	7.47	100	0.73
(9)	175.8	0.08	0.04	2.47	0.27	0.26	0.44	0.21	0.73	100

图 5 自由模态振型图对比

件等参数求解得到质量矩阵、阻尼矩阵、刚度矩阵;通 过对式(2)进行特征值求解,获得特征值和特征向量, 即确定结构的模态参数,包括模态频率和模态振型。

4.1 自由模态的计算验证

自由条件下,试验模态的分析结果对比如表 3 所示, 模态振型的对比如图 5 所示。表 3 和图 5 结果表明:第 一,自由状态下,数值计算与试验模态分析结果的低 阶模态差值较小,前六阶模态频率差值在 3% 以内,振 型与固有频率基本一致;第二,数值仿真结果与测试结 果偏差值随着模态阶次升高逐渐增大。

误差来源包括以下方面:

模态数值计算方面,波纹管刚度表现出很强的非

线性,这一特性使得波纹管的准确模拟较难实现:用三 向弹簧可以很好地等效三个方向的刚度,但不能模拟 弯曲刚度;在轴向刚度相等的情况下用薄壁圆柱去模拟 波纹管,弯曲刚度是否与真实波纹管相同也难以保证。 此外,计算模型对实际结构做了一定的简化处理,因此, 不确定性增大。

模态试验方面的可能误差来源包括:

(1)排气消声系统结构复杂,测点的数量有限,有的组件难以在其结构上安放传感器,

(2) 传感器安装方向可能会由于传感器的安装与测 试点结合度不稳定产生一定误差;

(3) 手工锤击法力度不能保持完全一致,因此混入

表 3 自由模态的结果对比

阶次	计算模态		试验	模态	差值		
	频率 /Hz	振型描述	频率 /Hz	振型描述	绝对差值 /Hz	相对差值 /%	
1	17.89	Y向一阶弯曲	17.58	Y向一阶弯曲	0.31	1.8	
2	21.38	Z向一阶弯曲	21.47	Z向一阶弯曲	-0.09	-0.4	
3	40.80	Y 向二阶弯曲	41.58	Y向二阶弯曲	-0.78	-1.9	
4	52.90	Z 向二阶弯曲	53.85	Z向二阶弯曲	-0.95	-1.8	
5	86.93	Y 向三阶弯曲	89.23	Y向三阶弯曲	-2.30	-2.6	
6	106.49	Z 向三阶弯曲	109.80	Z向三阶弯曲	-3.31	-3.0	

表 4 约束模态的结果对比

阶次	计算模态		试验	模态	差值	
	频率 /Hz	振型描述	频率 /Hz	振型描述	绝对差值 /Hz	相对差值 /%
1	13.39	Y 向一阶弯曲	13.68	Y向一阶弯曲	-0.29	2.1
2	16.79	Z 向一阶弯曲	16.03	Z向一阶弯曲	0.76	4.7
3	21.80	Y 向二阶弯曲	21.02	Y向二阶弯曲	0.78	3.7
4	32.26	Z 向二阶弯曲	28.15	Z向二阶弯曲	4.11	14.6
5	38.13	Y 向三阶弯曲	45.25	Y 向三阶弯曲	-7.12	-15.7
6	62.20	Z 向三阶弯曲	57.01	Z 向三阶弯曲	5.19	9.1

取存在一定分析误差。

图 6 约束模态振型图对比

了试验误差;

(4) 如果对应阶模态不清晰会导致该阶模态信号提

图 8 测试低速制动器时电机实时转速曲线

参考文献:

[1] 胡剑斌,陈璐,姜敏岗.SINAMICS 传动系统在冷轧 生产线上的应用 [J]. 科技创新与应用,2012(32):44.

[2] 孙铁弓. 基于 SIEMENS 运动控制系统的冷拉伸滚压 设备研究 [D]. 贵阳:贵州大学,2008.

[3] 牛建军, 王鹏凯. 西门子 S120 传动装置接地在高 棒生产线的应用 [C]. 2014 年全国轧钢生产技术会议文 集,2014. [4] 郭艳萍,钟立.变频及伺服应用技术[M].北京:人 民邮电出版社,2016.

作者简介:张彪(1989.12-),男,汉族,河北保定人, 中级工程师,本科,研究方向:港机设备智能控制、机 电维修;王杰(1987.11-),男,汉族,河北衡水人, 中级工程师,硕士研究生,研究方向:港机设备智能控制、 机电维修。

(上接第85页)

4.2 约束模态的计算验证

表 4 为排气消声系统约束模态试验测试结果与 CAE 仿真结果对比(图 6),可以得到:第一,仿真结果与模 态试验测试得到的前六阶频率存在一定差值,振型均一 致;第二,排气系统自由状态下,仿真结果与模态实验结 果的前三阶模态的振型及固有频率基本一致;第三,随着 频率阶次提升,计算模态结果与试验模态结果差值逐渐 升高,数值仿真模型不宜用于消声系统模拟。

约束模态数值分析的误差除了自由模态的误差来源 外,还有包括:

(1)橡胶吊挂的刚度、阻尼参数表现为动态特性和 非线性;

(2)发动机与排气系统连接处的法兰的连接刚度等参数不准确,经多次仿真计算发现此处连接刚度对约束模态影响较大。此外试验的台架的刚度可能对模态实验也有一定影响。

5 结语

自由模态及约束模态试验结果与数值结果的低阶模 态频率接近,且振型一致,数值仿真中建立的排气系 统模型是准确的。随着频率增加,试验结果与数值结 果误差增大,主要原因包括:首先,试验过程中传感器 的安装偏差、台架的刚度不足、锤击的不一致性、测 试系统本身的系统误差;其次,数值仿真模型中无法准 确地建立波纹管模型,无法很好地模拟橡胶吊耳的非 线性。

排气消声系统的约束模态受到多方面因素的影响, 现阶段的测试结果能提供一定的设计参考。若在实车测 试中出现怠速工况频率范围内的模态,通过在实车上调 整悬挂点位置、调整排气支管的长度的方案进行改进。

参考文献:

[1] 方彦奎,李长玉.汽车排气系统动态特性仿真及实验验证[J].电子测量技术,2021,44(04):45-50.
[2] 柳泽田,尹辉俊.某乘用车汽车排气系统振动特性分析[J].机械设计与制造,2022(02):94-98.
[3] 徐维维,马心坦,朱凯.某乘用车排气系统悬挂位置的确定[J].噪声与振动控制,2020,40(05):169-171.
[4] 谭祥军.从这里学 NVH-噪声、振动、模态分析的入门与进阶[M].北京:机械工业出版社,2018.