无人机倾斜摄影测量技术 在不动产更新测绘中的应用探究

张永鑫

(甘肃省地质矿产勘查开发局测绘勘查院 甘肃 兰州 730060)

摘要: 国内建筑业的快速的增长,对不动产的登记管理要求逐步提高,特别是对不动产数据的准确性和时 效性提出了更严格的标准。使用全站仪和RTK等方法采集不动产数据存在局限性,消耗大量的人力和物力, 已无法适应当前的发展需要。由此,本文针对无人机倾斜摄影测量的相关技术开展深入分析,并通过现实 的案例加以验证。结果表明,此技术具有快速、灵活的特点,并且效果好,可以进行推广使用。

关键词: 无人机倾斜摄影测量技术; RTK; 测绘; 三维建模

0 引言

无人机倾斜摄影测量技术是测绘领域中应用较为广 泛的一种技术,主要依据倾斜摄影来得到实际测量信息的 三维模型,进而可以直观地查看地形地貌。利用无人机倾 斜摄影测量技术可以有效避免使用传统航摄时出现的精度 低下的问题,并且能够对地物的顶部及侧面进行建模,特 别是在一些大范围的三维建模中拥有较强的能力。同时, 无人机倾斜摄影测量技术还可以应用在小面积的摄影测量 中,通过处理得到需要的三维模型和高精度地形图。本文 对无人机倾斜摄影测量的相关技术开展了深入的探讨,分 析了该技术在不动产数据更新中应用的可行性。

1 倾斜摄影测量关键技术

和传统的摄影测量技术对比来讲,倾斜摄影测量技 术与其具有较大的差别,在实际应用中拥有更加明显的优 势。以测量方式而言,倾斜摄影测量技术针对测量区进行 多方向、多角度的影像获取,然后再处理制作成三维的实 景模型。而传统的摄影测量基本是利用测量区各摄点中心 投影影像所生成的正射影像。无人机倾斜摄影测量技术在 实际应用中可以借助非常先进的定位技术,非常真实地将 测区的情况反映出来,而后续处理制作的三维实景模型则 能够帮助研究人员对被测区域特征和性质进行深入分析, 从多角度、多方面对测区的相关数据加以呈现,在一定程 度上有效地弥补了以往使用传统倾斜摄影测量技术存在的 不足,减少人员的投入以及资源的浪费。

1.1 无人机倾斜摄影测量系统

无人机倾斜摄影测量系统主要是利用无人机作为 飞行的平台,再使用倾斜摄影相机来获取航空影像, 在选择平台时应当注意载重、速度、续航时间、抗风 等几个方面,特别是对倾斜相机的性能要求较高。本 次研究对使用的无人机倾斜摄影平台进行了全面优化, 使用无人机和航摄系统的一体化系统来保障测量时的 飞行稳定,并使用精度非常高的双 RTK 导航、定位以 及精准飞行技术。由于结合使用了 POS 采集和相机拍 摄技术,无人机倾斜摄影测量系统可有效保障采样的 精度并减小误差。

1.2 飞行航线的设计

1.2.1 航摄的高度确定

由于无人机在测量时的飞行高度主要以航线为基础,所以需要依据实际测量任务需求确定,并结合相机 性能,具体计算公式如下。

$$H = f \times \text{GSD} / a \tag{1}$$

式中:H一航高;

f一相机焦距; GSD一地面分辨率; a一像元尺寸。

1.2.2 航摄重叠度

根据相关的低空摄影规范,无人机倾斜摄影时旁向 重叠度较为低下,而且不论是航向和旁向重叠度均建议 高于 70%,所以结合实际情况要求航向和旁向重叠度均 高于 75%。

1.3 像控点的布设

以往使用的传统摄影技术标准低,而倾斜摄影技术 则相对要求较高,特别是对重叠度的要求,当前所使用的 规范及标准不能满足实际需求。另外,航摄时基本使用 GNSS 定位,有利于影像位置的明确,提升空三计算准确 性。因此,像控点的布设密度选择 40000 ~ 60000 像素。

1.4 多视影像匹配及自动空三

以摄影测量加密的光束法区域平差为基础,得出函数模型共线方程如公式(2)。

$$u - u_{0} = -f \frac{a_{1}(X - X_{s}) + b_{1}(Y - Y_{s}) + c_{1}(Z - Z_{s})}{a_{3}(X - X_{s}) + b_{3}(Y - Y_{s}) + c_{3}(Z - Z_{s})}$$

$$v - v_{0} = -f \frac{a_{2}(X - X_{s}) + b_{2}(Y - Y_{s}) + c_{2}(Z - Z_{s})}{a_{3}(X - X_{s}) + b_{3}(Y - Y_{s}) + c_{3}(Z - Z_{s})}$$

$$(2)$$

式中: $(u - u_0)$ —像点的坐标; (u_0, v_0) —像主点的坐标; (X, Y, Z)—像点对应物空间坐标; (X_s, Y_s, Z_s) —外方位元素; $a_i, b_i, c_i (i = 1,2,3)$ —外方位角元素旋转矩阵。 通过线性化得出下式:

$$v = At + BX - L$$

$$\vec{x} \div : t = [dX_s \quad dY_s \quad dZ_s \quad d\varphi \quad d\omega \quad d\kappa]^T;$$

$$X = [dX \quad dY \quad dZ]^T \circ$$

$$(3)$$

对公式(2)进行求解时必须以良好的初始值为基础, 需要经多视几何技术来获取。首先假设以齐次坐标表示 空间点 $S_i(X_i, Y_i, Z_i, 1)$,投影点 $s_i(u_i, v_i, 1)$,投影矩阵P, 得下式。

$$\lambda_{i} \begin{bmatrix} u_{i} \\ v_{i} \\ 1 \end{bmatrix} = \begin{bmatrix} P_{11} & P_{12} & P_{13} & P_{14} \\ P_{21} & P_{22} & P_{23} & P_{24} \\ P_{31} & P_{32} & P_{33} & P_{34} \end{bmatrix} \begin{bmatrix} X_{i} \\ Y_{i} \\ Z_{i} \\ 1 \end{bmatrix}$$
(4)

式中: *\i*—比例因子。

在 *P* 中有自由变量共计 11 个,分为 *R*、*T*、*K*,具体如式(5)。

$$P = K[R \quad T] \tag{5}$$

$$\mathbf{K} = \begin{bmatrix} f & s & u_0 \\ 0 & f & v_0 \\ 0 & 0 & 1 \end{bmatrix}; \quad \mathbf{R} = \begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix}; \quad \mathbf{T} = \begin{bmatrix} T_x \\ T_y \\ T_z \end{bmatrix}$$

式中:R一旋转矩阵;

K-相机检校矩阵;

s-透镜畸变参数;

 T_x 、 T_y 、 T_z 一投影在世界坐标的坐标分量。

经填写纠正相关的匹配影像之后,再利用深度锁定 影像开展进一步的有效融合,并充分利用冗余的相关观 测,进一步提升密集匹配效率与图像的精度。

- 2 实际案例应用
- 2.1 应用区域

由于不动产数据的要求高,所以为满足区域测量的

准确性,本次选择昆明市五华区的一处区域,该区域面积为 3.458 km²。本次选择的测区地势主要呈现北高南低的趋势,而且是丘陵台地,多以村庄、小区以及学校和道路等为主,在区域北部有山地,平均海拔高度在 1840 m 左右,该区域的地形落差最高为 260 m。

2.2 精度指标、软件和硬件的技术参数

要求三维模型和地物点平面精度 ±5 cm、成图比例 1:500, 基本等高距 0.5 m, 城市与地面的高程误差低于 10 cm。

硬件使用大疆精灵 PHANTOM 4 RTK 摄影测量系统,分辨率 2 cm,定位精度和垂直方向分别为 2 cm、5 cm,兼容北斗和 GPS 的定位模式。三维建模时选择 经 ContextCapture Cente 预处理,再使用 DP-Mapper 实 景建模(图 1)以及制作地形图。

图 1 三维建模实例

2.3 测量技术流程

测量作业的主要流程如图2所示。

2.4 无人机倾斜摄影

本次实际测量的区域为长方形,将其外业航摄分成两个区,即东区、西区,分成4天26架次测量完成, 有效飞行面积在4.5km²左右。在实验测量期间的天气 均为晴天。通过对本次无人机获取的航摄数据进行有 效验证和检查,经过详细的检查确诊无任何的遗漏, 并且此次采集的影像均非常清晰,POS信息也十分完 整。本次倾斜摄影参数如表1所示。本次测量共得到 68664张图片,无论质量还是数据范围均达到测区生产 的标准需求。

项目	指标	项目	指标		
飞行次数	26	影像重叠率	JPG		
像素	3.9 µ m	影像格式	航向、旁向> 75%		
像幅	DAT	影像旋偏角 /°	< 6		
摄区面积 /km²	4.5	POS 格式	6000 × 4000		
焦距 /mm	35	相对航摄高度 /m	100		
测图面积 /km ²	3.3	数据容量 /GB	657		
地面分辨率 /m	0.02	影像数量	68664		

(6)

部件等地物要素的采集。针对一

些小部分的遮挡物,或未能确认 的属性等,可以再进行外业的调

当所有成果完成之后开展内 / 外业的质量检查。本次重点针对 成果的精度开展检查。外业使用

2"级全站仪对186个地物点进行 检测。依据《测绘成果质量检查

与验收》规定,计算检查点的平

面与高程误差, 中误差同等精度

 $M = \pm \sqrt{\frac{\sum_{i=1}^{n} \Delta_i^2}{2\pi}}$

绘及补测。

3 精度分析

的检测如下式:

图 2 项目作业流程示意图

2.5 像片控制和空三加密与优化

对于像控点的布设而言,首先在地面进行了控制点的预制,总共布设了96个点,并使用 RTK 来获取控点 坐标和高程。

基于空三结果,然后利用控制点的联合平差优化精 度,保障后续建模的需求。通过检查外方位元素的偏 差来验证精度时,需要重点关注空三运算的质量,例 如丢片、分层、断层等情况是否出现,是否符合限差 的标准要求。

2.6 实景三维建模

使用 ContextCapture Center 对航空获取的影像开展 预处理,首先检测和匹配图片,再经空三计算出内外方 位元素后进行散乱点云曲面重建,建立 TIN 网白模,再 无缝纹理映射后输出成果。

2.7 三维测图

地形图使用 DP-Modeler 测绘,利用倾斜摄影的三 维模型可以达到所见即所得的有效观测,在采集时不需 要佩戴立体的眼镜,能够针对地物的特征轮廓和点状地 物开展矢量的测绘,并在三维的环境下完成各个建筑、 式中:*M*一成果中误差;

、中:M[—]成未中庆左

n─检测点总数;

 Δ_i 一检测较差。

经过详细的精度计算得出:平面误差最高和最低分 别为12.50cm、0cm,3个点出现两倍中误差,计算得 出粗差率为1.61%。钢尺测量54条地物间距显示最大 和最小误差分别为0.16cm、0cm,其中出现两倍误差 的大概有3个点,计算得出粗差率为4.45%。检测地 物点19个,误差最大6cm、最小0.50cm。详细精度见 表2。

从表 2 的结果看出, 检测点的误差均低于标准规定 值,由此表明平面与高程的精度均良好,符合标准和设 计要求。

4 结语

本次研究显示,无人机倾斜摄影测量技术对不动产 数据的更新与修补具有良好的作用,实际应用已非常 成熟完善,而且自动化程度、精度高,可以降低测量 的投入,并可获取实景三维模型、TDOM、DSM、地

表2 均	也形图精度统计
------	---------

误差范围	平面误差			地物间距误差			高程误差		
	点数	比例 /%	MH/cm	点数	比例 %	MH/cm	点数	比例 /%	MH/cm
≤ 1/2M	83	44.62	1.61	33	61.11	- 4.45	17	89.47	- 2.25
> 1/2M 且 < M	63	33.87		13	24.07		2	10.53	
>M 且≤ 2M	36	19.35		5	9.26		0	0.00	
≥ 2M	4	2.15		3	5.56		0	0.00	

形图等,符合不动产对于数据更新和登记的要求,为 不动产的登记工作提供了相应的基础,应用前景较为 广阔。

参考文献:

[1] 刘敏,张启超,赵彬,等.基于低空无人机倾斜摄 影测量在农村房屋不动产登记权籍调查中的应用 [J]. 测绘与空间地理信息,2020,43(1):3.

[2] 刘培状,杨秉澍.基于无人机倾斜摄影测量和 BIM 技术的三维实景模型在水利工程设计中的应用研究 [J]. 地下水,2019,41(06):206-207.

[3] 沈如稳.无人机倾斜摄影测量技术在地籍测绘中的应用分析——以蚌埠市辖区宅基地确权登记为例 [J]. 安徽建筑,2021,28(02):178+186.

[4] 罗峰,黄振妥.基于无人机倾斜摄影测量技术的大区域房屋测量——以广州市金融城西区房屋现状摸查测

量为例 [J]. 工程勘察, 2019, 47(03):55-58.

[5] 范印,李梁,刘登飞,等.无人机倾斜摄影测量技 术在测绘工程中的应用研究——以农村房地一体化为例 [J].无线互联科技,2021,18(19):79-81.

[6] 何湘平,梁运强,黎志坚,等.无人机倾斜摄影测量技术在农村房地一体化测量中的应用[J].南宁师范大学学报(自然科学版).2021.38(03):129-134.

[7] 张兵良,鲍桂叶,陈宇箭,等.农村不动产权籍调查无人机倾斜摄影测量航线规划技术研究[J].测绘标准化,2020,36(02):22-26.

[8] 齐磊刚, 荆田芬, 王巍, 等. 无人机倾斜摄影测量技术用于农房不动产测绘 [J]. 有色冶金设计与研究, 2021, 42(06): 41-44.

[9] 潘红平,晋良高,袁龙.无人机倾斜摄影测量技术 在西藏江孜县农村房地一体确权登记中的应用 [J]. 经 纬天地,2020(06):31-35.

(上接第 51 页)

骤进行人工测试:

(1)将油箱注满油脂,使全部管路、分配器中充满 油脂,然后人工启动自动润滑系统进入工作状态,各润 滑点均应正常出油;

(2)人工启动润滑系统进入自动工作状态,使润滑 泵每次连续工作时间不小于所设定的每个工作循环中润 滑时间的2倍,经过两次以上启动运转后检查,系统各 部位应无泄漏、无渗漏、无故障,确认整个系统工作正 常后方可投入使用。

(3)检查泵低油位报警信号和分配器堵塞报警信号 是否正常。

(4)日常维护,根据系统提示定期补油,巡查管路 及接头情况,替换损坏的零部件。

3 结语

通过中天合创门克庆煤矿提供的该智能集中自动润 滑系统的应用证明显示,该润滑系统在井下大巷皮带机 上使用效果良好,在设备运转时能定时、定点、定量地 对各滚筒轴承部件予以良好润滑,有效降低了设备磨损, 大大减少了润滑油剂使用量和滚筒损坏率,提高了皮带 机设备运行的可靠性,降低了停机率。在环保和节能的 同时,降低了设备损耗、人工成本和保养维修时间,提 高了煤矿企业的综合效益。据业主反馈,截至目前,该 皮带机设备累计出煤超过 500 万吨,润滑系统运行稳定, 值得在行业内推广。

参考文献:

[1] 权钰云,王传武.自动集中润滑系统在掘进机上的应用[J].液压气动与密封,2010(11):64-66.
[2] 李鸿琳.基于 AMESim 的掘进机自动润滑系统的设计与研究[J].煤矿机械,2015,36(10):26-30.
[3] 刘暐,姜久超,马文华.多点自动润滑系统[J].油 气田地面工程,2010,29(6):108.

作者简介:谢士兴(1987.12-),男,汉族,河北邢台人, 研究生,工程师,研究方向:带式输送机设计研发。